Skip to main content

Advertisement

Log in

Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer’s Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang J, Eslinger PJ, Doty RL, Zimmerman EK, Grunfeld R, Sun X, Meadowcroft MD, Connor JR, Price JL, Smith MB, Yang QX (2010) Olfactory deficit detected by fMRI in early Alzheimer’s disease. Brain Res 1357:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Masurkar AV, Devanand DP (2014) Olfactory dysfunction in the elderly: basic circuitry and alterations with normal aging and Alzheimer’s disease. Curr Geriatr Rep 3:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  3. Macknin JB, Higuchi M, Lee VMY, Trojanowski JQ, Doty RL (2004) Olfactory dysfunction occurs in transgenic mice overexpressing human τ protein. Brain Res 1000:174–178

    Article  CAS  PubMed  Google Scholar 

  4. Cassano T, Romano A, Macheda T, Colangeli R, Cimmino CS, Petrella A, LaFerla FM, Cuomo V, Gaetani S (2011) Olfactory memory is impaired in a triple transgenic model of Alzheimer disease. Behav Brain Res 224:408–412

    Article  PubMed  Google Scholar 

  5. Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510

    Article  CAS  PubMed  Google Scholar 

  6. Attems J, Thomas A, Jellinger K (2012) Correlations between cortical and subcortical tau pathology. Neuropathol Appl Neurobiol 38:582–590

    Article  CAS  PubMed  Google Scholar 

  7. Okere CO, Kaba H, Higuchi T (1996) Formation of an olfactory recognition memory in mice: reassessment of the role of nitric oxide. Neuroscience 71:349–354

    Article  CAS  PubMed  Google Scholar 

  8. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    Article  CAS  PubMed  Google Scholar 

  9. Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857

    Article  CAS  PubMed  Google Scholar 

  10. Kosaka T, Kosaka K (2007) Heterogeneity of nitric oxide synthase-containing neurons in the mouse main olfactory bulb. Neurosci Res 57:165–178

    Article  CAS  PubMed  Google Scholar 

  11. Kendrick KM, Guevara-Guzman R, Zorrilla J, Hinton MR, Broad KD, Mimmack M, Ohkura S (1997) Formation of olfactory memories mediated by nitric oxide. Nature 388:670–674

    Article  CAS  PubMed  Google Scholar 

  12. Lledo PM (2005) Information processing in the mammalian olfactory system. Physiol Rev 85:281–317

    Article  PubMed  Google Scholar 

  13. Gotz J, Chen F, Barmettler R, Nitsch RM (2001) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276:529–534

    Article  CAS  PubMed  Google Scholar 

  14. Yang M, Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci 8:8–24

    Google Scholar 

  15. Litchfield S, Nagy Z (2001) New temperature modification makes the Bielschowsky silver stain reproducible. Acta Neuropathol 101:17–21

    CAS  PubMed  Google Scholar 

  16. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  17. Zarazúa S, Pérez-Severiano F, Delgado JM, Martínez LM, Ortiz-Pérez D, Jiménez-Capdeville ME (2006) Decreased nitric oxide production in the rat brain after chronic arsenic exposure. Neurochem Res 31:1069–1077

    Article  PubMed  Google Scholar 

  18. Linster C, Johnson BA, Morse A, Yue E, Leon M (2002) Spontaneous versus reinforced olfactory discriminations. J Neurosci 22:6842–6845

    CAS  PubMed  Google Scholar 

  19. Ramsden M (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647

    Article  CAS  PubMed  Google Scholar 

  20. Deters N, Ittner LM, Gtz J (2008) Divergent phosphorylation pattern of tau in P301L tau transgenic mice. Eur J Neurosci 28:137–147

    Article  PubMed  Google Scholar 

  21. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87:5827–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 189:167–169

    Article  CAS  PubMed  Google Scholar 

  23. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  PubMed Central  Google Scholar 

  24. Flunkert S, Hierzer M, Loffler T, Rabl R, Neddens J, Duller S, Schofield EL, Ward MA, Posch M, Jungwirth H, Windisch M, Hutter-Paier B (2013) Elevated levels of soluble total and hyperphosphorylated tau result in early behavioral deficits and distinct changes in brain pathology in a new tau transgenic mouse model. Neurodegener Dis 11:194–205

    Article  CAS  PubMed  Google Scholar 

  25. Coronas-Samano G, Portillo W, Beltran CV, Medina-Aguirre GI, Paredes RG, Diaz-Cintra S (2014) Deficits in odor-guided behaviors in the transgenic 3xTg-AD female mouse model of Alzheimers disease. Brain Res 1572:18–25

    Article  CAS  PubMed  Google Scholar 

  26. Hosler JS, Buxton KL, Smith BH (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behav Neurosci 114:514–525

    Article  CAS  PubMed  Google Scholar 

  27. Tan J, Savigner A, Ma M, Luo M (2010) Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 65:912–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen WR, Xiong W, Shepherd GM (2000) Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25:625–633

    Article  CAS  PubMed  Google Scholar 

  29. Kishimoto J, Keverne EB, Hardwick J, Emson PC (1993) Localization of nitric oxide synthase in the mouse olfactory and vomeronasal system: a histochemical, immunological and in situ hybridization study. Eur J Neurosci 5:1684–1694

    Article  CAS  PubMed  Google Scholar 

  30. Rolls ET (2015) Limbic systems for emotion and for memory, but no single limbic system. Cortex 62:119–157

    Article  PubMed  Google Scholar 

  31. Nagayama S (2010) Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 4. doi:10.3389/fncir.2010.00120

  32. Sanchez-Andrade G, James BM, Kendrick KM (2005) Neural encoding of olfactory recognition memory. J Reprod Dev 51:547–558

    Article  PubMed  Google Scholar 

  33. Annamalai B, Won J, Choi S, Singh I, Singh AK (2015) Role of S-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochem Bioph Res Commun 458:214–219

    Article  CAS  Google Scholar 

  34. Colton CA, Vitek MP, Wink DA, Xu Q, Cantillana V, Previti ML, Van Nostrand WE, Weinberg JB, Dawson H (2006) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:12867–12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corzo L, Zas R, Rodriguez S, Fernandez-Novoa L, Cacabelos R (2007) Decreased levels of serum nitric oxide in different forms of dementia. Neurosci Lett 420:263–267

    Article  CAS  PubMed  Google Scholar 

  36. Tarkowski E, Ringqvist A, Blennow K, Wallin A, Wennmalm A (2000) Intrathecal release of nitric oxide in Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord 11:322–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Human tau (htau) expression plasmid pR5 was kindly provided by Dr. Jürgen Götz. This study was supported by the China Medical Board (Grant No. 98-677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelan Wang.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Ding, W., Zhu, X. et al. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice. Neurochem Res 41, 722–730 (2016). https://doi.org/10.1007/s11064-015-1741-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1741-8

Keywords

Navigation