Skip to main content

Advertisement

Log in

Effects of IP3R2 Receptor Deletion in the Ischemic Mouse Retina

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K+ current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K+ currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 /) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K+ currents in Müller cells from ischemic IP 3 R2 / retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 / mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia 61:651–678

    Article  PubMed  Google Scholar 

  2. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  PubMed  Google Scholar 

  3. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451

    Article  CAS  PubMed  Google Scholar 

  4. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis GP, Fisher SK (2003) Up-regulation of glial fribrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    Article  CAS  PubMed  Google Scholar 

  6. Franke H, Krügel U, Schmidt R, Grosche J, Reichenbach A, Illes P (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134:1180–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A (2011) Purinergic signaling involved in Müller cell function in the mammalian retina. Prog Retin Eye Res 30:324–342

    Article  CAS  PubMed  Google Scholar 

  8. Wurm A, Lipp S, Pannicke T, Linnertz R, Krügel U, Schulz A, Färber K, Zahn D, Grosse J, Wiedemann P, Chen J, Schöneberg T, Illes P, Reichenbach A, Bringmann A (2010) Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells. J Neurochem 112:1261–1272

    Article  CAS  PubMed  Google Scholar 

  9. Sharp AH, Nucifora FC Jr, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406:207–220

    Article  CAS  PubMed  Google Scholar 

  10. Lipp S, Wurm A, Pannicke T, Wiedemann P, Reichenbach A, Chen J, Bringmann A (2009) Calcium responses mediated by type 2 IP3-receptors are required for osmotic volume regulation of retinal glial cells in mice. Neurosci Lett 457:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    Article  CAS  PubMed  Google Scholar 

  12. Pannicke T, Frommherz I, Biedermann B, Wagner L, Sauer K, Ulbricht E, Härtig W, Krügel U, Ueberham U, Arendt T, Illes P, Bringmann A, Reichenbach A, Grosche A (2014) Differential effects of P2Y1 deletion on glial activation and survival of photoreceptors and amacrine cells in the ischemic mouse retina. Cell Death Dis 5:e1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X, Zima AV, Sheikh F, Blatter LA, Chen J (2005) Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate (IP3)-receptor type 2-deficient mice. Circ Res 96:1274–1281

    Article  CAS  PubMed  Google Scholar 

  14. Kuroiwa S, Katai N, Shibuki H, Kurokawa T, Umihira J, Nikaido T, Kametani K, Yoshimura N (1998) Expression of cell cycle-related genes in dying cells in retinal ischemic injury. Invest Ophthalmol Vis Sci 39:610–617

    CAS  PubMed  Google Scholar 

  15. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Müller cell membrane: their regulation by insulin and laminin signals. J Neurosci 17:7725–7735

    CAS  PubMed  Google Scholar 

  17. Hirrlinger PG, Ulbricht E, Iandiev I, Reichenbach A, Pannicke T (2010) Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia. Neurosci Lett 472:73–78

    Article  CAS  PubMed  Google Scholar 

  18. Bringmann A, Francke M, Pannicke T, Biedermann B, Kodal H, Faude F, Reichelt W, Reichenbach A (2000) Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 29:35–44

    Article  CAS  PubMed  Google Scholar 

  19. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka M, Shih P-Y, Gomi H, Yoshida T, Nakai J, Ando R, Furuichi T, Mikoshiba K, Semyanov A, Itohara S (2013) Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain 6:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petravicz J, Fiacco TA, McCarthy KD (2008) Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci 28:4967–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–1254

    Article  CAS  PubMed  Google Scholar 

  23. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    Article  CAS  PubMed  Google Scholar 

  24. Navarrete M, Perea G, Fernandez de Sevilla D, Gómez-Gonzalo M, Núnez A, Martin ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10:e1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, Golshani P, Khakh BS (2015) Ca2+ signalling in astrocytes from Ip3r2 / mice in brain slices and during startle responses in vivo. Nat Neurosci 18:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanemaru K, Kubota J, Sekiya H, Hirose K, Okubo Y, Iino M (2013) Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc Natl Acad Sci USA 110:11612–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newman EA (2003) Glial cell inhibtion of neurons by release of ATP. J Neurosci 23:1659–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu J, Holstein JD, Upadhyay G, Lin D-T, Conway S, Muller E, Lechleiter JD (2007) Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J Neurosci 27:6510–6520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Deutsche Forschungsgemeinschaft (FOR 748, GRA4403/1-1 to A.G., RE 849/16-1, PA 615/2-1 to T.P.) and the PRO RETINA-Stiftung to A.G. Dirkje Felder is thanked for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Grosche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, L., Pannicke, T., Frommherz, I. et al. Effects of IP3R2 Receptor Deletion in the Ischemic Mouse Retina. Neurochem Res 41, 677–686 (2016). https://doi.org/10.1007/s11064-015-1735-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1735-6

Keywords

Navigation