Skip to main content

Advertisement

Log in

Cerebral Area Differential Redox Response of Neonatal Rats to Selenite-Induced Oxidative Stress and to Concurrent Administration of Highbush Blueberry Leaf Polyphenols

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Our goal was to delineate the mechanisms of selenite-induced oxidative stress in neonatal rats and investigate the potential of blueberry leaf polyphenols to counteract the induced stress. Vaccinium corymbosum leaf decoction (BLD) was analyzed by UPLC-MS and LC-DAD, along with its in vitro antioxidant activity (DPPH radical scavenging, FRAP, ferrous chelation). Newborn suckling Wistar rats were randomly divided into three groups: ‘Se’ and ‘SeBLD’ received 20 μmol Na2SeO3/kg BW subcutaneously (PN day 10); ‘SeBLD’ received 100 mg dry BLD/kg BW intraperitoneally (PN11 and 12) and Group ‘C’ received normal saline. Βiochemical analysis revealed tissue-specific effects of selenite. Brain as a whole was more resistant to selenite toxicity in comparison to liver; midbrain and cerebellum were in general not affected, but cortex was moderately disturbed. Liver lipid peroxidation, GSH, SOD, CAT, GPx were significantly affected, whereas proteolytic activity was not. BLD, which is rich in chlorogenic acid and flavonols (especially quercetin derivatives), exerted significant antioxidant protective effects in all regions. In conclusion, we provide for the first time an insight to the neonatal rat cerebral and liver redox response against a toxic selenite dose and blueberry leaf polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Postgate JR (1952) Competitive and noncompetitive inhibitors of bacterial sulphate reduction. J Gen Microbiol 6:128–142

    Article  CAS  PubMed  Google Scholar 

  2. Ostadalova I, Babicky A, Obenberger J (1978) Cataract induced by administration of a single dose of sodium selenite to suckling rats. Experientia 34:222–223

    Article  CAS  PubMed  Google Scholar 

  3. Shearer TR, McCormack DW, DeSart DJ, Britton JL, Lopez MT (1980) Histological evaluation of selenium induced cataracts. Exp Eye Res 31:327–333

    Article  CAS  PubMed  Google Scholar 

  4. Bunce GE, Hess JL (1981) Biochemical changes associated with selenite-induced cataract in the rat. Exp Eye Res 33:505–514

    Article  CAS  PubMed  Google Scholar 

  5. Ostadalova I, Babicky A, Obenberger J (1979) Cataractogenic and lethal effect of selenite in rats during postnatal ontogenesis. Physiol Bohemoslov 28:393–397

    CAS  PubMed  Google Scholar 

  6. Kramer GF, Ames BN (1988) Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res 201:169–180

    Article  CAS  PubMed  Google Scholar 

  7. Newland MC, Hoffman DJ, Heath JC, Donlin WD (2013) Response inhibition is impaired by developmental methylmercury exposure: acquisition of low-rate lever-pressing. Behav Brain Res 253:196–205

    Article  CAS  PubMed  Google Scholar 

  8. Schweizer U, Brauer AU, Kohrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45:164–178

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9:568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45

    Article  CAS  PubMed  Google Scholar 

  12. Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, Lamari FN (2009) Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 198:352–358

    Article  CAS  PubMed  Google Scholar 

  13. Papandreou MA, Tsachaki M, Efthimiopoulos S, Klimis-Zacas D, Margarity M, Lamari FN (2012) Cell-line specific protection by berry polyphenols against hydrogen peroxide challenge and lack of effect on metabolism of amyloid precursor protein. Phytother Res 26:956–963

    Article  CAS  PubMed  Google Scholar 

  14. Tsao R, Yang R (2003) Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. J Chromatogr A 1018:29–40

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248

    Article  CAS  Google Scholar 

  16. Li WJ, Cheng XL, Liu J, Lin RC, Wang GL, Du SS, Liu ZL (2012) Phenolic compounds and antioxidant activities of Liriope muscari. Molecules 17:1797–1808

    Article  CAS  PubMed  Google Scholar 

  17. Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550–557

    Article  CAS  Google Scholar 

  18. Ren Z, He C, Fan Y, Guo L, Si H, Wang Y, Shi Z, Zhang H (2014) Immuno-enhancement effects of ethanol extract from Cyrtomium macrophyllum (Makino) Tagawa on cyclophosphamide-induced immunosuppression in BALB/c mice. J Ethnopharmacol 155:769–775

    Article  PubMed  Google Scholar 

  19. Pallares V, Fernandez-Iglesias A, Cedo L, Castell-Auvi A, Pinent M, Ardevol A, Salvado MJ, Garcia-Vallve S, Blay M (2013) Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats. Free Radic Biol Med 60:107–114

    Article  CAS  PubMed  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  21. Grotto D, Santa Maria LD, Boeira S, Valentini J, Charao MF, Moro AM, Nascimento PC, Pomblum VJ, Garcia SC (2007) Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal 43:619–624

    Article  CAS  PubMed  Google Scholar 

  22. Jentzsch AM, Bachmann H, Furst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20:251–256

    Article  CAS  PubMed  Google Scholar 

  23. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  24. Makri OE, Ferlemi AV, Lamari FN, Georgakopoulos CD (2013) Saffron administration prevents selenite-induced cataractogenesis. Mol Vis 19:1188–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  26. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  27. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  28. Sasaki T, Kikuchi T, Yumoto N, Yoshimura N, Murachi T (1984) Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem 259:12489–12494

    CAS  PubMed  Google Scholar 

  29. Khan JY, Black SM (2003) Developmental changes in murine brain antioxidant enzymes. Pediatr Res 54:77–82

    Article  CAS  PubMed  Google Scholar 

  30. Shivakumar BR, Anandatheerthavarada HK, Ravindranath V (1991) Free radical scavenging systems in developing rat brain. Int J Dev Neurosci 9:181–185

    Article  CAS  PubMed  Google Scholar 

  31. Danscher G (1982) Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76:281–293

    Article  CAS  PubMed  Google Scholar 

  32. Downes N, Mullins P (2013) The Development of myelin in the brain of the Juvenile rat. Toxicol Pathol 42:913–922

    Article  PubMed  Google Scholar 

  33. Sauvageot CM, Stiles CD (2002) Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244–249

    Article  CAS  PubMed  Google Scholar 

  34. Camins A, Verdaguer E, Folch J, Pallas M (2006) Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev 12:135–148

    Article  CAS  PubMed  Google Scholar 

  35. Hamakubo T, Kannagi R, Murachi T, Matus A (1986) Distribution of calpains I and II in rat brain. J Neurosci 6:3103–3111

    CAS  PubMed  Google Scholar 

  36. Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: A mechanism of “pathological apoptosis”? J Biol Chem 276:10191–10198

    Article  CAS  PubMed  Google Scholar 

  37. Ostadalova I, Babicky A, Kopoldova J (1988) Selenium metabolism in rats after administration of toxic doses of selenite. Physiol Bohemoslov 37:159–164

    CAS  PubMed  Google Scholar 

  38. Anundi I, Stahl A, Hogberg J (1984) Effects of selenite on O2 consumption, glutathione oxidation and NADPH levels in isolated hepatocytes and the role of redox changes in selenite toxicity. Chem Biol Interact 50:277–288

    Article  CAS  PubMed  Google Scholar 

  39. Stewart MS, Spallholz JE, Neldner KH, Pence BC (1999) Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol Med 26:42–48

    Article  CAS  PubMed  Google Scholar 

  40. Gavrilova V, Kajdzanoska M, Gjamovski V, Stefova M (2011) Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J Agric Food Chem 59:4009–4018

    Article  CAS  PubMed  Google Scholar 

  41. Oszmianski J, Wojdylo A, Gorzelany J, Kapusta I (2011) Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J Agric Food Chem 59:12830–12835

    Article  CAS  PubMed  Google Scholar 

  42. Harris CS, Burt AJ, Saleem A, Le PM, Martineau LC, Haddad PS, Bennett SA, Arnason JT (2007) A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem Anal 18:161–169

    Article  CAS  PubMed  Google Scholar 

  43. Matsuo Y, Fujita Y, Ohnishi S, Tanaka T, Hirabaru H, Kai T, Sakaida H, Nishizono S, Kouno I (2010) Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chem 121:1073–1079

    Article  CAS  Google Scholar 

  44. Piljac-Zegarac J, Belscak A, Piljac A (2009) Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. J Med Food 12:608–614

    Article  CAS  PubMed  Google Scholar 

  45. Loh G, Romo-Vaquero M, Selma M-V, Larrosa M, Obiol M, García-Villalba R, González-Barrio R, Issaly N, Flanagan J, Roller M, Tomás-Barberán FA, García-Conesa M-T (2014) A rosemary extract rich in carnosic acid selectively modulates caecum microbiota and inhibits β-glucosidase activity, altering fiber and short chain fatty acids fecal excretion in lean and obese female rats. PLoS ONE 9:e94687

    Article  Google Scholar 

  46. Jacobs H, Moalin M, van Gisbergen MW, Bast A, van der Vijgh WJ, Haenen GR (2011) An essential difference in the reactivity of the glutathione adducts of the structurally closely related flavonoids monoHER and quercetin. Free Radic Biol Med 51:2118–2123

    Article  CAS  PubMed  Google Scholar 

  47. Vauzour D (2012) Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxidative medicine and cellular longevity 2012:1–16

    Article  Google Scholar 

  48. Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T, Kato Y, Ito M, Miyamoto K, Tsuji A, Kawai Y, Terao J (2011) Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med 51:1329–1336

    Article  CAS  PubMed  Google Scholar 

  49. Paulke A, Eckert GP, Schubert-Zsilavecz M, Wurglics M (2012) Isoquercitrin provides better bioavailability than quercetin: comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Pharmazie 67:991–996

    CAS  PubMed  Google Scholar 

  50. Schaffer S, Halliwell B (2012) Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr 7:99–109

    Article  CAS  PubMed  Google Scholar 

  51. Wu K, Wang ZZ, Liu D, Qi XR (2014) Pharmacokinetics, brain distribution, release and blood-brain barrier transport of Shunaoxin pills. J Ethnopharmacol 151:1133–1140

    Article  CAS  PubMed  Google Scholar 

  52. Dogan Z, Kocahan S, Erdemli E, Kose E, Yilmaz I, Ekincioglu Z, Ekinci N, Turkoz Y (2014) Effect of chemotherapy exposure prior to pregnancy on fetal brain tissue and the potential protective role of quercetin. Cytotechnology. doi:10.1007/s10616-014-9742-z

  53. Lakroun Z, Kebieche M, Lahouel A, Zama D, Desor F, Soulimani R (2015) Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat. Environ Sci Pollut Res Int 22:7776–7781

    Article  CAS  PubMed  Google Scholar 

  54. Das S, Mandal AK, Ghosh A, Panda S, Das N, Sarkar S (2008) Nanoparticulated quercetin in combating age related cerebral oxidative injury. Curr Aging Sci 1:169–174

    Article  CAS  PubMed  Google Scholar 

  55. Hamza RZ, El-Shenawy NS, Ismail HA (2015) Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. J Basic Clin Physiol Pharmacol 26:237–251

    CAS  PubMed  Google Scholar 

  56. Jeong HR, Jo YN, Jeong JH, Kim HJ, Kim MJ, Heo HJ (2013) Blueberry (Vaccinium virgatum) leaf extracts protect against Abeta-induced cytotoxicity and cognitive impairment. J Med Food 16:968–976

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by ‘K. Karatheodoris’ Grant No. C913 from the Research Committee, University of Patras, Greece. The authors kindly thank the Greek Cooperative ‘Biodrama’, East Macedonia, Greece, for the offer of dried highbush blueberry leaves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotini N. Lamari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferlemi, AV., Mermigki, P.G., Makri, O.E. et al. Cerebral Area Differential Redox Response of Neonatal Rats to Selenite-Induced Oxidative Stress and to Concurrent Administration of Highbush Blueberry Leaf Polyphenols. Neurochem Res 40, 2280–2292 (2015). https://doi.org/10.1007/s11064-015-1718-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1718-7

Keywords

Navigation