Skip to main content

Advertisement

Log in

Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia–ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

BHB:

β-Hydroxybutyrate

BHBdehase:

β-Hydroxybutyrate dehydrogenase

CCI:

Controlled cortical impact traumatic brain injury

Cho or tCho:

Total choline

Cr or tCr:

Total creatine

Gln:

Glutamine

Glu:

Glutamate

Glx:

Glutamate and glutamine

GPC:

Glycerophosphocholine

HI:

Hypoxia–ischemia

HIE:

Hypoxic–ischemic encephalopathy

1H-MRS:

Proton magnetic resonance spectroscopy

Lac:

Lactate

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NAA:

N-acetylaspartate

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

PND:

Postnatal day

PPP:

Pentose phosphate pathway

TBI:

Traumatic brain injury

References

  1. McKenna MC, Dienel GA, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy metabolism of the brain. In: Brady S, Siegel GJ, Albers RW, Price D (eds) Basic neurochemistry: principles of molecular, cellular and medical neurobiology. Academic Press, Burlington, pp 200–231

    Chapter  Google Scholar 

  2. Settergren G, Lindblad BS, Persson B (1976) Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand 65:343–353

    Article  CAS  PubMed  Google Scholar 

  3. Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 231:840–843

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi T, Shirane R, Sato S, Yoshimoto T (1999) Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR Am J Neuroradiol 20:917–922

    CAS  PubMed  Google Scholar 

  5. Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 70:265–275

    Article  CAS  PubMed  Google Scholar 

  6. Nehlig A (1997) Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia. Diabetes Metab 23:18–29

    CAS  PubMed  Google Scholar 

  7. Powers WJ, Rosenbaum JL, Dence CS, Markham J, Videen TO (1998) Cerebral glucose transport and metabolism in preterm human infants. J Cereb Blood Flow Metab 18:632–638

    Article  CAS  PubMed  Google Scholar 

  8. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    Article  CAS  PubMed  Google Scholar 

  9. Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134

    Article  CAS  PubMed  Google Scholar 

  10. Brekke E, Morken TS, Sonnewald U (2015) Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem Int 82:33–41

    Article  CAS  PubMed  Google Scholar 

  11. Buerstatte CR, Behar KL, Novotny EJ, Lai JC (2000) Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res 125:139–145

    Article  CAS  PubMed  Google Scholar 

  12. Novotny EJ Jr, Ariyan C, Mason GF, O’Reilly J, Haddad GG, Behar KL (2001) Differential increase in cerebral cortical glucose oxidative metabolism during rat postnatal development is greater in vivo than in vitro. Brain Res 888:193–202

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury GM, Patel AB, Mason GF, Rothman DL, Behar KL (2007) Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development. J Cereb Blood Flow Metab 27:1895–1907

    Article  CAS  PubMed  Google Scholar 

  14. Morken TS, Brekke E, Haberg A, Wideroe M, Brubakk AM, Sonnewald U (2013) Neuron–astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. Neurochem Res 39:556–569

    Article  PubMed  CAS  Google Scholar 

  15. Dukhande VV, Isaac AO, Chatterji T, Lai JC (2009) Reduced glutathione regenerating enzymes undergo developmental decline and sexual dimorphism in the rat cerebral cortex. Brain Res 1286:19–24

    Article  CAS  PubMed  Google Scholar 

  16. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, Gustafson KE, Leach TM, Green C, Bara R, Petrie Huitema CM, Ehrenkranz RA, Tyson JE, Das A, Hammond J, Peralta-Carcelen M, Evans PW, Heyne RJ, Wilson-Costello DE, Vaucher YE, Bauer CR, Dusick AM, Adams-Chapman I, Goldstein RF, Guillet R, Papile LA, Higgins RD (2012) Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 366:2085–2092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yeates KO, Swift E, Taylor HG, Wade SL, Drotar D, Stancin T, Minich N (2004) Short- and long-term social outcomes following pediatric traumatic brain injury. J Int Neuropsychol Soc 10:412–426

    PubMed  Google Scholar 

  18. Wechsler B, Kim H, Gallagher PR, DiScala C, Stineman MG (2005) Functional status after childhood traumatic brain injury. J Trauma 58:940–949 discussion 950

    Article  PubMed  Google Scholar 

  19. Giza CC, Kolb B, Harris NG, Asarnow RF, Prins ML (2009) Hitting a moving target: basic mechanisms of recovery from acquired developmental brain injury. Dev Neurorehabil 12:255–268

    Article  PubMed Central  PubMed  Google Scholar 

  20. Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, Ferriero DM (1999) Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol 20:1399–1405

    CAS  PubMed  Google Scholar 

  21. Shanmugalingam S, Thornton JS, Iwata O, Bainbridge A, O’Brien FE, Priest AN, Ordidge RJ, Cady EB, Wyatt JS, Robertson NJ (2006) Comparative prognostic utilities of early quantitative magnetic resonance imaging spin–spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. Pediatrics 118:1467–1477

    Article  PubMed  Google Scholar 

  22. Goergen SK, Ang H, Wong F, Carse EA, Charlton M, Evans R, Whiteley G, Clark J, Shipp D, Jolley D, Paul E, Cheong JL (2014) Early MRI in term infants with perinatal hypoxic-ischaemic brain injury: interobserver agreement and MRI predictors of outcome at 2 years. Clin Radiol 69:72–81

    Article  CAS  PubMed  Google Scholar 

  23. Cady EB (2001) Magnetic resonance spectroscopy in neonatal hypoxic–ischaemic insults. Childs Nerv Syst 17:145–149

    Article  CAS  PubMed  Google Scholar 

  24. Perlman JM (2006) Intervention strategies for neonatal hypoxic–ischemic cerebral injury. Clin Ther 28:1353–1365

    Article  CAS  PubMed  Google Scholar 

  25. Prins ML, Matsumoto J (2014) Metabolic response of pediatric traumatic brain injury. J Child Neurol. doi:10.1177/0883073814549244

  26. Fatemi A, Wilson MA, Johnston MV (2009) Hypoxic–ischemic encephalopathy in the term infant. Clin Perinatol 36:835–858

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kochanek PM, Clark RS, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, Robertson CL, Satchell MA, Seidberg NA, Marion DW, Jenkins LW (2000) Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med 1:4–19

    Article  PubMed  Google Scholar 

  28. Bayir H, Adelson PD, Wisniewski SR, Shore P, Lai Y, Brown D, Janesko-Feldman KL, Kagan VE, Kochanek PM (2009) Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit Care Med 37:689–695

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V (2014) Neurobiology of premature brain injury. Nat Neurosci 17:341–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bluml S, Wisnowski JL, Nelson MD Jr, Paquette L, Panigrahy A (2014) Metabolic maturation of white matter is altered in preterm infants. PLoS One 9:e85829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379:2162–2172

    Article  PubMed  Google Scholar 

  32. Kinney HC (2006) The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol 30:81–88

    Article  PubMed  Google Scholar 

  33. Saigal S, Doyle LW (2008) An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371:261–269

    Article  PubMed  Google Scholar 

  34. Thornberg E, Thiringer K, Odeback A, Milsom I (1995) Birth asphyxia: incidence, clinical course and outcome in a Swedish population. Acta Paediatr 84:927–932

    Article  CAS  PubMed  Google Scholar 

  35. Levene ML, Kornberg J, Williams TH (1985) The incidence and severity of post-asphyxial encephalopathy in full-term infants. Early Hum Dev 11:21–26

    Article  CAS  PubMed  Google Scholar 

  36. Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE (2008) A systematic review of the role of intrapartum hypoxia–ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199:587–595

    Article  CAS  PubMed  Google Scholar 

  37. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum Dev 86:329–338

    Article  PubMed  Google Scholar 

  38. Robertson CM, Finer NN, Grace MG (1989) School performance of survivors of neonatal encephalopathy associated with birth asphyxia at term. J Pediatr 114:753–760

    Article  CAS  PubMed  Google Scholar 

  39. Dixon G, Badawi N, Kurinczuk JJ, Keogh JM, Silburn SR, Zubrick SR, Stanley FJ (2002) Early developmental outcomes after newborn encephalopathy. Pediatrics 109:26–33

    Article  PubMed  Google Scholar 

  40. WHO, Table 2. Infant Deaths 2005. World Health Organization

  41. Inder T, Huppi PS, Zientara GP, Maier SE, Jolesz FA, di Salvo D, Robertson R, Barnes PD, Volpe JJ (1999) Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 134:631–634

    Article  CAS  PubMed  Google Scholar 

  42. Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760

    Article  CAS  PubMed  Google Scholar 

  43. Higgins RD, Raju T, Edwards AD, Azzopardi DV, Bose CL, Clark RH, Ferriero DM, Guillet R, Gunn AJ, Hagberg H, Hirtz D, Inder TE, Jacobs SE, Jenkins D, Juul S, Laptook AR, Lucey JF, Maze M, Palmer C, Papile L, Pfister RH, Robertson NJ, Rutherford M, Shankaran S, Silverstein FS, Soll RF, Thoresen M, Walsh WF (2011) Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr 159:851–858

    Article  PubMed Central  PubMed  Google Scholar 

  44. Jacobs S, Hunt R, Tarnow-Mordi W, Inder T, Davis P (2007) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. doi:10.1002/14651858.CD003311.pub3.

  45. Massaro AN, Murthy K, Zaniletti I, Cook N, DiGeronimo R, Dizon M, Hamrick SE, McKay VJ, Natarajan G, Rao R, Smith D, Telesco R, Wadhawan R, Asselin JM, Durand DJ, Evans JR, Dykes F, Reber KM, Padula MA, Pallotto EK, Short BL, Mathur AM (2015) Short-term outcomes after perinatal hypoxic ischemic encephalopathy: a report from the Children’s Hospitals Neonatal Consortium HIE focus group. J Perinatol 35:290–296

    Article  CAS  PubMed  Google Scholar 

  46. Faul M, Xu L, Wald MM, Coronado VG, (2010) Traumatic brain injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control

  47. Giza CC, Mink RB, Madikians A (2007) Pediatric traumatic brain injury: not just little adults. Curr Opin Crit Care 13:143–152

    Article  PubMed  Google Scholar 

  48. Ryan NP, Anderson V, Godfrey C, Beauchamp MH, Coleman L, Eren S, Rosema S, Taylor K, Catroppa C (2014) Predictors of very-long-term sociocognitive function after pediatric traumatic brain injury: evidence for the vulnerability of the immature “social brain”. J Neurotrauma 31:649–657

    Article  PubMed  Google Scholar 

  49. Catroppa C, Godfrey C, Rosenfeld JV, Hearps SS, Anderson VA (2012) Functional recovery ten years after pediatric traumatic brain injury: outcomes and predictors. J Neurotrauma 29:2539–2547

    Article  PubMed  Google Scholar 

  50. Babikian T, Asarnow R (2009) Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology 23:283–296

    Article  PubMed Central  PubMed  Google Scholar 

  51. Kendall GS, Melbourne A, Johnson S, Price D, Bainbridge A, Gunny R, Huertas-Ceballos A, Cady EB, Ourselin S, Marlow N, Robertson NJ (2014) White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology 271:230–238

    Article  PubMed  Google Scholar 

  52. Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123(Pt 10):2046–2054

    Article  PubMed  Google Scholar 

  53. Holshouser BA, Tong KA, Ashwal S (2005) Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR Am J Neuroradiol 26:1276–1285

    PubMed  Google Scholar 

  54. Brooks WM, Friedman SD, Gasparovic C (2001) Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil 16:149–164

    Article  CAS  PubMed  Google Scholar 

  55. Ashwal S, Tong KA, Ghosh N, Bartnik-Olson B, Holshouser BA (2014) Application of advanced neuroimaging modalities in pediatric traumatic brain injury. J Child Neurol 29:1704–1717

    Article  PubMed Central  PubMed  Google Scholar 

  56. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dincer A, Dydak U, Emir UE, Frahm J, Gonzalez RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Huppi PS, Hurd RE, Kantarci K, Klomp DW, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjanska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJ, Ratai EM, Ross BD, Scheenen TW, Schuster C, Smith IC, Soher BJ, Tkac I, Vigneron DB, Kauppinen RA (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679

    Article  PubMed Central  PubMed  Google Scholar 

  57. Cady EB, Penrice J, Amess PN, Lorek A, Wylezinska M, Aldridge RF, Franconi F, Wyatt JS, Reynolds EO (1996) Lactate, N-acetylaspartate, choline and creatine concentrations, and spin–spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 36:878–886

    Article  CAS  PubMed  Google Scholar 

  58. Cheong JL, Cady EB, Penrice J, Wyatt JS, Cox IJ, Robertson NJ (2006) Proton MR spectroscopy in neonates with perinatal cerebral hypoxic–ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol 27:1546–1554

    CAS  PubMed  Google Scholar 

  59. Rae CD (2014) A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res 39:1–36

    Article  CAS  PubMed  Google Scholar 

  60. Peltier J, O’Neill A, Schaffer DV (2007) PI3 K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361

    Article  CAS  PubMed  Google Scholar 

  61. Sanchez S, Jimenez C, Carrera AC, Diaz-Nido J, Avila J, Wandosell F (2004) A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem Int 44:231–242

    Article  CAS  PubMed  Google Scholar 

  62. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958

    Article  CAS  PubMed  Google Scholar 

  63. Holshouser BA, Ashwal S, Luh GY, Shu S, Kahlon S, Auld KL, Tomasi LG, Perkin RM, Hinshaw DB Jr (1997) Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 202:487–496

    Article  CAS  PubMed  Google Scholar 

  64. McLean MA, Woermann FG, Barker GJ, Duncan JS (2000) Quantitative analysis of short echo time (1)H-MRSI of cerebral gray and white matter. Magn Reson Med 44:401–411

    Article  CAS  PubMed  Google Scholar 

  65. Horska A, Kaufmann WE, Brant LJ, Naidu S, Harris JC, Barker PB (2002) In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J Magn Reson Imaging 15:137–143

    Article  PubMed  Google Scholar 

  66. Sonnewald U, Kondziella D (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. NMR Biomed 16:424–429

    Article  CAS  PubMed  Google Scholar 

  67. Bartnik BL, Lee SM, Hovda DA, Sutton RL (2007) The fate of glucose during the period of decreased metabolism after fluid percussion injury: a 13C NMR study. J Neurotrauma 24:1079–1092

    Article  PubMed  Google Scholar 

  68. Scafidi S, O’Brien J, Hopkins I, Robertson C, Fiskum G, McKenna M (2009) Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem 109(Suppl 1):189–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bartnik-Olson BL, Harris NG, Shijo K, Sutton RL (2013) Insights into the metabolic response to traumatic brain injury as revealed by (13)C NMR spectroscopy. Front Neuroenergetics 5:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Ball G, Boardman JP, Rueckert D, Aljabar P, Arichi T, Merchant N, Gousias IS, Edwards AD, Counsell SJ (2012) The effect of preterm birth on thalamic and cortical development. Cereb Cortex 22:1016–1024

    Article  PubMed Central  PubMed  Google Scholar 

  71. Hart AR, Smith MF, Whitby EH, Alladi S, Wilkinson S, Paley MN, Griffiths PD (2014) Diffusion-weighted imaging and magnetic resonance proton spectroscopy following preterm birth. Clin Radiol 69:870–879

    Article  CAS  PubMed  Google Scholar 

  72. Scafidi J, Hammond TR, Scafidi S, Ritter J, Jablonska B, Roncal M, Szigeti-Buck K, Coman D, Huang Y, McCarter RJ Jr, Hyder F, Horvath TL, Gallo V (2014) Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 506:230–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kwon SH, Scheinost D, Lacadie C, Benjamin J, Myers EH, Qiu M, Schneider KC, Rothman DL, Constable RT, Ment LR (2014) GABA, resting-state connectivity and the developing brain. Neonatology 106:149–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Smyser CD, Kidokoro H, Inder TE (2012) Magnetic resonance imaging of the brain at term equivalent age in extremely premature neonates: To scan or not to scan? J Paediatr Child Health 48:794–800

    Article  PubMed Central  PubMed  Google Scholar 

  75. Wisnowski JL, Bluml S, Paquette L, Zelinski E, Nelson MD Jr, Painter MJ, Damasio H, Gilles F, Panigrahy A (2013) Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS One 8:e56880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Bapat R, Narayana PA, Zhou Y, Parikh NA (2014) Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr Neurol 51:53–59

    Article  PubMed  Google Scholar 

  77. Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WK, Murad S, Omar RZ, Robertson NJ (2010) Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 125:e382–e395

    Article  PubMed  Google Scholar 

  78. De Vis JB, Hendrikse J, Petersen ET, de Vries LS, van Bel F, Alderliesten T, Negro S, Groenendaal F, Benders MJNL (2015) Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol 25:113–121

    Article  PubMed  Google Scholar 

  79. Amess PN, Penrice J, Wylezinska M, Lorek A, Townsend J, Wyatt JS, Amiel-Tison C, Cady EB, Stewart A (1999) Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 41:436–445

    CAS  PubMed  Google Scholar 

  80. Liu J, Sheldon RA, Segal MR, Kelly MJ, Pelton JG, Ferriero DM, James TL, Litt L (2013) 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia–ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatr Res 74:170–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407

    Article  CAS  PubMed  Google Scholar 

  82. Morken TS, Brekke E, Haberg A, Wideroe M, Brubakk AM, Sonnewald U (2014) Altered astrocyte-neuronal interactions after hypoxia–ischemia in the neonatal brain in female and male rats. Stroke 45:2777–2785

    Article  PubMed  Google Scholar 

  83. Brekke EM, Morken TS, Wideroe M, Haberg AK, Brubakk AM, Sonnewald U (2014) The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic–ischemic brain injury. J Cereb Blood Flow Metab 34:724–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 9:131–141

    Article  PubMed  Google Scholar 

  85. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed Central  PubMed  Google Scholar 

  86. Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, Knierim DS, Sheridan C, Craig K, Andrews GH, Hinshaw DB (2000) Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 23:114–125

    Article  CAS  PubMed  Google Scholar 

  87. Ashwal S, Holshouser BA, Tomasi LG, Shu S, Perkin RM, Nystrom GA, Hinshaw DB Jr (1997) 1H-magnetic resonance spectroscopy-determined cerebral lactate and poor neurological outcomes in children with central nervous system disease. Ann Neurol 41:470–481

    Article  CAS  PubMed  Google Scholar 

  88. Brenner T, Freier MC, Holshouser BA, Burley T, Ashwal S (2003) Predicting neuropsychologic outcome after traumatic brain injury in children. Pediatr Neurol 28:104–114

    Article  PubMed  Google Scholar 

  89. Makoroff KL, Cecil KM, Care M, Ball WS Jr (2005) Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury. Pediatr Radiol 35:668–676

    Article  PubMed  Google Scholar 

  90. Aaen GS, Holshouser BA, Sheridan C, Colbert C, McKenney M, Kido D, Ashwal S (2010) Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma. Pediatrics 125:295–303

    Article  PubMed  Google Scholar 

  91. Hunter JV, Wilde EA, Tong KA, Holshouser BA (2012) Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma 29:654–671

    Article  PubMed Central  PubMed  Google Scholar 

  92. Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL (2008) Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma 25:603–614

    Article  PubMed Central  PubMed  Google Scholar 

  93. Deng-Bryant Y, Prins ML, Hovda DA, Harris NG (2012) Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J Neurotrauma 28:1813–1825

    Article  Google Scholar 

  94. Cernak I, Chang T, Ahmed FA, Cruz MI, Vink R, Stoica B, Faden AI (2010) Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age. Dev Neurosci 32:442–453

    CAS  PubMed  Google Scholar 

  95. Bartnik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM (2005) Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotrauma 22:1052–1065

    Article  PubMed  Google Scholar 

  96. Bartnik BL, Hovda DA, Lee PW (2007) Glucose metabolism after traumatic brain injury: estimation of pyruvate carboxylase and pyruvate dehydrogenase flux by mass isotopomer analysis. J Neurotrauma 24:181–194

    Article  PubMed  Google Scholar 

  97. Robertson CL, Saraswati M, Scafidi S, Fiskum G, Casey P, McKenna MC (2013) Cerebral glucose metabolism in an immature rat model of pediatric traumatic brain injury. J Neurotrauma 30:2066–2072

    Article  PubMed Central  PubMed  Google Scholar 

  98. Adcock KH, Nedelcu J, Loenneker T, Martin E, Wallimann T, Wagner BP (2002) Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia–ischemia. Dev Neurosci 24:382–388

    Article  CAS  PubMed  Google Scholar 

  99. Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G (2010) Neuroprotection by acetyl-l-carnitine after traumatic injury to the immature rat brain. Dev Neurosci 32:480–487

    CAS  PubMed  Google Scholar 

  100. Prins ML, Fujima LS, Hovda DA (2005) Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 82:413–420

    Article  CAS  PubMed  Google Scholar 

  101. Prins ML, Lee SM, Fujima LS, Hovda DA (2004) Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. J Neurochem 90:666–672

    Article  CAS  PubMed  Google Scholar 

  102. Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, McKenna MC (2010) Metabolism of acetyl-l-carnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem 114:820–831

    Article  CAS  PubMed  Google Scholar 

  103. Hadera MG, Smeland OB, McDonald TS, Tan KN, Sonnewald U, Borges K (2014) Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy. J Neurochem 129:107–119

    Article  CAS  PubMed  Google Scholar 

  104. Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, Cohen AS (2010) Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci USA 107:366–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Willis S, Stoll J, Sweetman L, Borges K (2010) Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 40:565–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem J 218:131–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Dombrowski GJ Jr, Swiatek KR, Chao KL (1989) Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain. Neurochem Res 14:667–675

    Article  CAS  PubMed  Google Scholar 

  108. Klee CB, Sokoloff L (1967) Changes in D(–)-beta-hydroxybutyric dehydrogenase activity during brain maturation in the rat. J Biol Chem 242:3880–3883

    CAS  PubMed  Google Scholar 

  109. Levitsky LL, Fisher DE, Paton JB, Delannoy CW (1977) Fasting plasma levels of glucose, acetoacetate, D-beta-hydroxybutyrate, glycerol, and lactate in the baboon infant: correlation with cerebral uptake of substrates and oxygen. Pediatr Res 11:298–302

    Article  CAS  PubMed  Google Scholar 

  110. Settergren G, Lindblad BS, Persson B (1980) Cerebral blood flow and exchange of oxygen, glucose ketone bodies, lactate, pyruvate and amino acids in anesthetized children. Acta Paediatr Scand 69:457–465

    Article  CAS  PubMed  Google Scholar 

  111. Cremer JE, Cunningham VJ, Pardridge WM, Braun LD, Oldendorf WH (1979) Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem 33:439–445

    Article  CAS  PubMed  Google Scholar 

  112. Ninfali P, Aluigi G, Pompella A (1998) Postnatal expression of glucose-6-phosphate dehydrogenase in different brain areas. Neurochem Res 23:1197–1204

    Article  CAS  PubMed  Google Scholar 

  113. Murthy MR, Rappoport DA (1963) Biochemistry of the developing rat brain. Iii. Mitochondrial oxidation of citrate and isocitrate and associated phosphorylation. Biochim Biophys Acta 74:328–339

    Article  CAS  PubMed  Google Scholar 

  114. McKenna MC, Tildon JT, Stevenson JH, Hopkins IB (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci 16:291–300

    Article  CAS  PubMed  Google Scholar 

  115. Hawkins RA, Williamson DH, Krebs HA (1971) Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 122:13–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Edmond J, Auestad N, Robbins RA, Bergstrom JD (1985) Ketone body metabolism in the neonate: development and the effect of diet. Fed Proc 44:2359–2364

    CAS  PubMed  Google Scholar 

  117. Cremer JE (1982) Substrate utilization and brain development. J Cereb Blood Flow Metab 2:394–407

    Article  CAS  PubMed  Google Scholar 

  118. Cremer JE, Braun LD, Oldendorf WH (1976) Changes during development in transport processes of the blood–brain barrier. Biochim Biophys Acta 448:633–637

    Article  CAS  PubMed  Google Scholar 

  119. Edmond J (1974) Ketone bodies as precursors of sterols and fatty acids in the developing rat. J Biol Chem 249:72–80

    CAS  PubMed  Google Scholar 

  120. Tildon JT, Cone AL, Cornblath M (1971) Coenzyme A transferase activity in rat brain. Biochem Biophys Res Commun 43:225–231

    Article  CAS  PubMed  Google Scholar 

  121. Page MA, Krebs HA, Williamson DH (1971) Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem J 121:49–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Booth RF, Patel TB, Clark JB (1980) The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem 34:17–25

    Article  CAS  PubMed  Google Scholar 

  123. Swiatek KR, Dombrowski GJ Jr, Chao KL (1984) The metabolism of d- and l-3-hydroxybutyrate in developing rat brain. Biochem Med 31:332–346

    Article  CAS  PubMed  Google Scholar 

  124. Cremer JE (1971) Incorporation of label from d- -hydroxy(14 C)butyrate and (3–14 C)acetoacetate into amino acids in rat brain in vivo. Biochem J 122:135–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Tildon JT, Cornblath M (1972) Succinyl-CoA: 3-ketoacid CoA-transferase deficiency. A cause for ketoacidosis in infancy. J Clin Invest 51:493–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Chowdhury GM, Jiang L, Rothman DL, Behar KL (2014) The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J Cereb Blood Flow Metab 34:1233–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Edmond J, Higa TA, Korsak RA, Bergner EA, Lee WN (1998) Fatty acid transport and utilization for the developing brain. J Neurochem 70:1227–1234

    Article  CAS  PubMed  Google Scholar 

  128. Tabata H, Bell JM, Miller JC, Rapoport SI (1986) Incorporation of plasma palmitate into the brain of the rat during development. Brain Res 394:1–8

    Article  CAS  PubMed  Google Scholar 

  129. Innis SM, Sprecher H, Hachey D, Edmond J, Anderson RE (1999) Neonatal polyunsaturated fatty acid metabolism. Lipids 34:139–149

    Article  CAS  PubMed  Google Scholar 

  130. Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23:5928–5935

    CAS  PubMed  Google Scholar 

  131. Leyton J, Drury PJ, Crawford MA (1987) In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration. Lipids 22:553–558

    Article  CAS  PubMed  Google Scholar 

  132. Leyton J, Drury PJ, Crawford MA (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57:383–393

    Article  CAS  PubMed  Google Scholar 

  133. Cremer JE (1964) Amino acid metabolism in rat brain studied with 14c-labelled glucose. J Neurochem 11:165–185

    Article  CAS  PubMed  Google Scholar 

  134. Van Kooij BJ, Benders MJ, Anbeek P, Van Haastert IC, De Vries LS, Groenendaal F (2012) Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol 54:260–266

    Article  PubMed  Google Scholar 

  135. Lai JC, White BK, Buerstatte CR, Haddad GG, Novotny EJ Jr, Behar KL (2003) Chronic hypoxia in development selectively alters the activities of key enzymes of glucose oxidative metabolism in brain regions. Neurochem Res 28:933–940

    Article  CAS  PubMed  Google Scholar 

  136. Fatemi A, Wilson MA, Phillips AW, McMahon MT, Zhang J, Smith SA, Arauz EJ, Falahati S, Gummadavelli A, Bodagala H, Mori S, Johnston MV (2011) In vivo magnetization transfer MRI shows dysmyelination in an ischemic mouse model of periventricular leukomalacia. J Cereb Blood Flow Metab 31:2009–2018

    Article  PubMed Central  PubMed  Google Scholar 

  137. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35:148–151

    Article  CAS  PubMed  Google Scholar 

  138. Hanrahan JD, Cox IJ, Edwards AD, Cowan FM, Sargentoni J, Bell JD, Bryant DJ, Rutherford MA, Azzopardi D (1998) Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res 44:304–311

    Article  CAS  PubMed  Google Scholar 

  139. Peden CJ, Rutherford MA, Sargentoni J, Cox IJ, Bryant DJ, Dubowitz LM (1993) Proton spectroscopy of the neonatal brain following hypoxic-ischaemic injury. Dev Med Child Neurol 35:502-510

    Article  CAS  PubMed  Google Scholar 

  140. Fan G, Wu Z, Chen L, Guo Q, Ye B, Mao J (2003) Hypoxia-ischemic encephalopathy in full-term neonate: correlation proton MR spectroscopy with MR imaging. Eur J Radiol 45:91–98

    Article  PubMed  Google Scholar 

  141. van Doormaal PJ, Meiners LC, ter Horst HJ, van der Veere CN, Sijens PE (2011) The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia. Eur Radiol 22:772–778

    Article  PubMed Central  PubMed  Google Scholar 

  142. Zhu W, Zhong W, Qi J, Yin P, Wang C, Chang L (2008) Proton magnetic resonance spectroscopy in neonates with hypoxic–ischemic injury and its prognostic value. Transl Res 152:225–232

    Article  CAS  PubMed  Google Scholar 

  143. Robertson NJ, Lewis RH, Cowan FM, Allsop JM, Counsell SJ, Edwards AD, Cox IJ (2001) Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res 50:692–700

    Article  CAS  PubMed  Google Scholar 

  144. Groenendaal F, Roelants-Van Rijn AM, van Der Grond J, Toet MC, de Vries LS (2001) Glutamate in cerebral tissue of asphyxiated neonates during the first week of life demonstrated in vivo using proton magnetic resonance spectroscopy. Biol Neonate 79:254–257

    Article  CAS  PubMed  Google Scholar 

  145. Vial F, Serriere S, Barantin L, Montharu J, Nadal-Desbarats L, Pourcelot L, Seguin F (2004) A newborn piglet study of moderate hypoxic–ischemic brain injury by 1H-MRS and MRI. Magn Reson Imaging 22:457–465

    Article  CAS  PubMed  Google Scholar 

  146. Malisza KL, Kozlowski P, Ning G, Bascaramurty S, Tuor UI (1999) Metabolite changes in neonatal rat brain during and after cerebral hypoxia–ischemia: a magnetic resonance spectroscopic imaging study. NMR Biomed 12:31–38

    Article  CAS  PubMed  Google Scholar 

  147. Xu S, Waddell J, Zhu W, Shi D, Marshall AD, McKenna MC, Gullapalli RP (2014) In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic–ischemic rat brain injury: Neuroprotective effects of acetyl-l-carnitine. Magn Reson Med. doi:10.1002/mrm.25537

  148. Babikian T, Prins ML, Cai Y, Barkhoudarian G, Hartonian I, Hovda DA, Giza CC (2010) Molecular and physiological responses to juvenile traumatic brain injury: focus on growth and metabolism. Dev Neurosci 32:431–441

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Ashwal S, Holshouser B, Tong K, Serna T, Osterdock R, Gross M, Kido D (2004) Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. J Neurotrauma 21:1539–1552

    Article  CAS  PubMed  Google Scholar 

  150. Ashwal S, Holshouser B, Tong K, Serna T, Osterdock R, Gross M, Kido D (2004) Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res 56:630–638

    Article  CAS  PubMed  Google Scholar 

  151. Kochanek AR, Kline AE, Gao WM, Chadha M, Lai Y, Clark RS, Dixon CE, Jenkins LW (2006) Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev Neurosci 28:410–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Robertson CL, Saraswati M, Fiskum G (2007) Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 101:1248–1257

    Article  CAS  PubMed  Google Scholar 

  153. Ji J, Baart S, Vikulina AS, Clark RS, Anthonymuthu TS, Tyurin VA, Du L, St Croix CM, Tyurina YY, Lewis J, Skoda EM, Kline AE, Kochanek PM, Wipf P, Kagan VE, Bayir H (2015) Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia–reperfusion. J Cereb Blood Flow Metab 35:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Prins ML, Giza CC (2006) Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci 28:447–456

    Article  CAS  PubMed  Google Scholar 

  155. Potts MB, Rola R, Claus CP, Ferriero DM, Fike JR, Noble-Haeusslein LJ (2009) Glutathione peroxidase overexpression does not rescue impaired neurogenesis in the injured immature brain. J Neurosci Res 87:1848–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Wainwright MS, Mannix MK, Brown J, Stumpf DA (2003) L-carnitine reduces brain injury after hypoxia–ischemia in newborn rats. Pediatr Res 54:688–695

    Article  CAS  PubMed  Google Scholar 

  157. Wainwright MS, Kohli R, Whitington PF, Chace DH (2006) Carnitine treatment inhibits increases in cerebral carnitine esters and glutamate detected by mass spectrometry after hypoxia–ischemia in newborn rats. Stroke 37:524–530

    Article  CAS  PubMed  Google Scholar 

  158. Williams JJ, Mayurasakorn K, Vannucci SJ, Mastropietro C, Bazan NG, Ten VS, Deckelbaum RJ (2013) N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic–ischemic injury in neonatal mice. PLoS One 8:e56233

  159. Chun PT, McPherson RJ, Marney LC, Zangeneh SZ, Parsons BA, Shojaie A, Synovec RE, Juul SE (2015) Serial plasma metabolites following hypoxic-ischemic encephalopathy in a nonhuman primate model. Dev Neurosci 37:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Appelberg KS, Hovda DA, Prins ML (2009) The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotrauma 26:497–506

    Article  PubMed Central  PubMed  Google Scholar 

  161. Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ, Tyurin VA, Tyurina YY, Fink B, Manole MD, Puccio AM, Okonkwo DO, Cheng JP, Alexander H, Clark RS, Kochanek PM, Wipf P, Kagan VE, Bayir H (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 15:1407–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH Grants 5P01 HD016596 (M.C.M.) and K08 NS 069815 (S.S.).

Conflict of interest

None.

Human and animal rights

This article does not contain any studies with human participants performed by any of the authors. All animal studies by the authors that are cited in this study were approved by IACUC and performed in compliance with all NIH guidelines for animal research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. McKenna.

Additional information

Special Issue: In Honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKenna, M.C., Scafidi, S. & Robertson, C.L. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 40, 2527–2543 (2015). https://doi.org/10.1007/s11064-015-1600-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1600-7

Keywords

Navigation