Simko M, Mattsson MO (2004) Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem 93:83–92
Article
CAS
PubMed
Google Scholar
International Agency for Research on Cancer (2002) IARC monographs on the evaluation of carcinogenic risks to humans. Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields, vol 80. International Agency for Research on Cancer. Distributed by IARC Press and by the World Health Organization, Lyon, France
Simko M (2007) Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14:1141–1152
Article
CAS
PubMed
Google Scholar
Rollwitz J, Lupke M, Simko M (2004) Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim Biophys Acta 1674:231–238
Article
CAS
PubMed
Google Scholar
Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50
Article
CAS
PubMed
Google Scholar
Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163
Article
CAS
PubMed
Google Scholar
Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 discussion S36–S28
Article
CAS
PubMed
Google Scholar
Robberecht W (2000) Oxidative stress in amyotrophic lateral sclerosis. J Neurol 247(Suppl 1):I1–I6
Article
PubMed
Google Scholar
Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225–243
Article
CAS
PubMed
Google Scholar
Bonhomme-Faivre L, Marion S, Bezie Y, Auclair H, Fredj G, Hommeau C (1998) Study of human neurovegetative and hematologic effects of environmental low-frequency (50-Hz) electromagnetic fields produced by transformers. Arch Environ Health 53:87–92
Article
CAS
PubMed
Google Scholar
Bersani F, Marinelli F, Ognibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM (1997) Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18:463–469
Article
CAS
PubMed
Google Scholar
Sandyk R, Tsagas N, Anninos PA, Derpapas K (1992) Magnetic fields mimic the behavioral effects of REM sleep deprivation in humans. Int J Neurosci 65:61–68
Article
CAS
PubMed
Google Scholar
Szemerszky R, Zelena D, Barna I, Bardos G (2010) Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats. Brain Res Bull 81:92–99
Article
CAS
PubMed
Google Scholar
Lacy-Hulbert A, Metcalfe JC, Hesketh R (1998) Biological responses to electromagnetic fields. FASEB J 12:395–420
CAS
PubMed
Google Scholar
Ciombor DM, Aaron RK (2005) The role of electrical stimulation in bone repair. Foot Ankle Clin 10:579–593 vii
Article
PubMed
Google Scholar
Jasti AC, Wetzel BJ, Aviles H, Vesper DN, Nindl G, Johnson MT (2001) Effect of a wound healing electromagnetic field on inflammatory cytokine gene expression in rats. Biomed Sci Instrum 37:209–214
CAS
PubMed
Google Scholar
Olney RK (2002) Transcranial magnetic stimulation: pro. Amyotroph Lateral Scler Other Motor Neuron Disord 3(Suppl 1):S111
Article
PubMed
Google Scholar
Barth A, Ponocny I, Ponocny-Seliger E, Vana N, Winker R (2010) Effects of extremely low-frequency magnetic field exposure on cognitive functions: results of a meta-analysis. Bioelectromagnetics 31:173–179
PubMed
Google Scholar
Vazquez-Garcia M, Elias-Vinas D, Reyes-Guerrero G, Dominguez-Gonzalez A, Verdugo-Diaz L, Guevara-Guzman R (2004) Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol Behav 82:685–690
Article
CAS
PubMed
Google Scholar
Jenrow KA, Zhang X, Renehan WE, Liboff AR (1998) Weak ELF magnetic field effects on hippocampal rhythmic slow activity. Exp Neurol 153:328–334
Article
CAS
PubMed
Google Scholar
Mathie A, Kennard LE, Veale EL (2003) Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects. Radiat Prot Dosimetry 106:311–316
Article
CAS
PubMed
Google Scholar
Tasset I, Medina FJ, Jimena I, Aguera E, Gascon F, Feijoo M, Sanchez-Lopez F, Luque E, Pena J, Drucker-Colin R, Tunez I (2012) Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. Neuroscience 209:54–63
Article
CAS
PubMed
Google Scholar
Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F (2009) Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol 219:334–343
Article
PubMed
Google Scholar
Afrasiabi A, Riazi GH, Dadras A, Tavili E, Ghalandari B, Naghshineh A, Mobasheri H, Ahmadian S (2014) Electromagnetic fields with 217 Hz and 0.2 mT as hazardous factors for tubulin structure and assembly (in vitro study). J Iran Chem Soc 11:1295–1304
Article
CAS
Google Scholar
Chance WT, Grossman CJ, Newrock R, Bovin G, Yerian S, Schmitt G, Mendenhall C (1995) Effects of electromagnetic fields and gender on neurotransmitters and amino acids in rats. Physiol Behav 58:743–748
Article
CAS
PubMed
Google Scholar
Lai H, Carino M (1999) 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration. Bioelectromagnetics 20:284–289
Article
CAS
PubMed
Google Scholar
Testylier G, Tonduli L, Malabiau R, Debouzy JC (2002) Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics 23:249–255
Article
CAS
PubMed
Google Scholar
Afrasiabi A, Riazi GH, Abbasi S, Dadras A, Ghalandari B, Seidkhani H, Modaresi SM, Masoudian N, Amani A, Ahmadian S (2014) Synaptosomal acetylcholinesterase activity variation pattern in the presence of electromagnetic fields. Int J Biol Macromol 65:8–15
Article
CAS
PubMed
Google Scholar
Headley PM, Grillner S (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sci 11:205–211
Article
CAS
PubMed
Google Scholar
Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47
Article
CAS
PubMed
Google Scholar
Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105
Article
CAS
PubMed
Google Scholar
Pitsikas N (2013) The metabotropic glutamate receptors: potential drug targets for the treatment of anxiety disorders? Eur J Pharmacol 723:181–184
Article
PubMed
Google Scholar
Linden A-M, Schoepp DD (2006) Metabotropic glutamate receptor targets for neuropsychiatric disorders. Drug Discov Today Ther Strateg 3:507–517
Article
Google Scholar
Wieronska JM, Pilc A (2009) Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 55:85–97
Article
CAS
PubMed
Google Scholar
Tokita K, Yamaji T, Hashimoto K (2012) Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 100:688–704
Article
CAS
PubMed
Google Scholar
Buckingham SC, Robel S (2013) Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem Int 63:696–701
Article
CAS
PubMed
Google Scholar
Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402
Article
CAS
PubMed
Google Scholar
Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E (2012) New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 100:752–774
Article
CAS
PubMed
Google Scholar
Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595
Article
CAS
PubMed
Google Scholar
Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766
Article
CAS
PubMed
Google Scholar
Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634
Article
CAS
PubMed
Google Scholar
Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 18:S15–S21
Article
PubMed
Google Scholar
Caudle WM, Zhang J (2009) Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol 220:230–233
Article
CAS
PubMed
Google Scholar
Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29
Article
CAS
PubMed
Google Scholar
Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355
Article
CAS
PubMed
Google Scholar
Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9:467–474
Article
PubMed
Google Scholar
Cortese BM, Phan KL (2005) The role of glutamate in anxiety and related disorders. CNS Spectr 10:820–830
PubMed
Google Scholar
Mody I, MacDonald JF (1995) NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 16:356–359
Article
CAS
PubMed
Google Scholar
Chu LY, Lee JH, Nam YS, Lee YJ, Park WH, Lee BC, Kim D, Chung YH, Jeong JH (2011) Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum. Gen Physiol Biophys 30:415–421
Article
CAS
PubMed
Google Scholar
Jelenkovic A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, Prolic Z (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 68:355–360
Article
CAS
PubMed
Google Scholar
Lee BC, Johng HM, Lim JK, Jeong JH, Baik KY, Nam TJ, Lee JH, Kim J, Sohn UD, Yoon G, Shin S, Soh KS (2004) Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 73:43–48
Article
CAS
PubMed
Google Scholar
Akdag MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taskin A (2010) Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol Trace Elem Res 138:238–249
Article
CAS
PubMed
Google Scholar
Falone S, Mirabilio A, Carbone MC, Zimmitti V, Di Loreto S, Mariggio MA, Mancinelli R, Di Ilio C, Amicarelli F (2008) Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol 40:2762–2770
Article
CAS
PubMed
Google Scholar
Kabuto H, Yokoi II, Ogawa N, Mori A, Liburdy RP (2001) Effects of magnetic fields on the accumulation of thiobarbituric acid reactive substances induced by iron salt and H(2)O(2) in mouse brain homogenates or phosphotidylcholine. Pathophysiology 7:283–288
Article
CAS
PubMed
Google Scholar
Tunez I, Drucker-Colin R, Jimena I, Medina FJ, Munoz Mdel C, Pena J, Montilla P (2006) Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. J Neurochem 97:619–630
Article
CAS
PubMed
Google Scholar
Tunez I, Montilla P, del Carmen Munoz M, Medina FJ, Drucker-Colin R (2006) Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci Res 56:91–95
Article
CAS
PubMed
Google Scholar
Dodd PR, Hardy JA, Oakley AE, Edwardson JA, Perry EK, Delaunoy JP (1981) A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res 226:107–118
Article
CAS
PubMed
Google Scholar
Dodd P, Hardy JA, Oakley AE, Strong AJ (1981) Synaptosomes prepared from fresh human cerebral cortex; morphology, respiration and release of transmitter amino acids. Brain Res 224:419–425
Article
CAS
PubMed
Google Scholar
Zaleska MM, Nagy K, Floyd RA (1989) Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochem Res 14:597–605
Article
CAS
PubMed
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Article
CAS
PubMed
Google Scholar
Bai F, Witzmann FA (2007) Synaptosome proteomics. Subcell Biochem 43:77–98
Article
PubMed Central
PubMed
Google Scholar
Greber S, Schwarzer C, Sperk G (1994) Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br J Pharmacol 113:737–740
Article
PubMed Central
CAS
PubMed
Google Scholar
Rowe RC, Roberts RJ (1998) Intelligent Software for Product Formulation. Taylor & Francis Ltd., London
Google Scholar
Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727
Article
CAS
PubMed
Google Scholar
Ali HS, Blagden N, York P, Amani A, Brook T (2009) Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors. Eur J Pharm Sci 37:514–522
Article
CAS
PubMed
Google Scholar
Floyd CE Jr, Lo JY, Yun AJ, Sullivan DC, Kornguth PJ (1994) Prediction of breast cancer malignancy using an artificial neural network. Cancer 74:2944–2948
Article
PubMed
Google Scholar
Takayama K, Fujikawa M, Nagai T (1999) Artificial neural network as a novel method to optimize pharmaceutical formulations. Pharm Res 16:1–6
Article
CAS
PubMed
Google Scholar
Intelligensys (2008) http://www.intelligensys.co.uk/models/extras/INForm_intro_files/frame.htm (retrieved 10.09.2008)
Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H (1997) Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm Dev Technol 2:111–121
Article
CAS
PubMed
Google Scholar
Ledda M, Carlo FD, D’Emilia E, Giuliani L, Grimaldi S, Lisi A (2010) Extremely-low frequency magnetic field modulates differentiation and maturation of human and rat primary and multipotent stem cells. Eur J Oncol 5:135–147
Google Scholar
Wieraszko A, Armani J, Maqsood N, Raja H, Philip S (2005) Modification of the synaptic glutamate turnover in the hippocampal tissue exposed to low-frequency, pulsed magnetic fields. Brain Res 1052:232–235
Article
CAS
PubMed
Google Scholar
Capone F, Dileone M, Profice P, Pilato F, Musumeci G, Minicuci G, Ranieri F, Cadossi R, Setti S, Tonali PA, Di Lazzaro V (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm 116:257–265
Article
CAS
PubMed
Google Scholar
Barbier E, Dufy B, Veyret B (1996) Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 17:303–311
Article
CAS
PubMed
Google Scholar
Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315
Article
CAS
PubMed
Google Scholar
Calvo AC, MaJ Azanza (1999) Synaptic neurone activity under applied 50 Hz alternating magnetic fields. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124:99–107
Article
CAS
PubMed
Google Scholar
Singh P, Mann KA, Mangat HK, Kaur G (2003) Prolonged glutamate excitotoxicity: effects on mitochondrial antioxidants and antioxidant enzymes. Mol Cell Biochem 243:139–145
Article
CAS
PubMed
Google Scholar
Feychting M, Jonsson F, Pedersen NL, Ahlbom A (2003) Occupational magnetic field exposure and neurodegenerative disease. Epidemiology 14:413–419 discussion 427–418
PubMed
Google Scholar
Qiu C, Fratiglioni L, Karp A, Winblad B, Bellander T (2004) Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiology 15:687–694
Article
PubMed
Google Scholar
Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, van Kranen-Mastenbroek V, Weber W, Visser-Vandewalle V (2007) Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Neurosurgery 61:346–355 discussion 355–347
Article
PubMed
Google Scholar