Skip to main content

Variations of Glutamate Concentration Within Synaptic Cleft in the Presence of Electromagnetic Fields: An Artificial Neural Networks Study

Abstract

Glutamate is an excitatory neurotransmitter that is released by the majority of central nervous system synapses and is involved in developmental processes, cognitive functions, learning and memory. Excessive elevated concentrations of Glu in synaptic cleft results in neural cell apoptosis which is called excitotoxicity causing neurodegenerative diseases. Hence, we investigated the possibility of extremely low frequency electromagnetic fields (ELF-EMF) as a risk factor which is able to change Glu concentration in synaptic clef. Synaptosomes as a model of nervous terminal were exposed to ELF-EMF for 15–55 min in flux intensity range from 0.1 to 2 mT and frequency range from 50 to 230 Hz. Finally, all raw data by INForm v4.02 software as an artificial neural network program was analyzed to predict the effect of whole mentioned range spectra. The results showed the tolerance of all effects between the ranges from −35 to +40 % compared to normal state when glutamatergic systems exposed to ELF-EMF. It indicates that glutamatergic system attempts to compensate environmental changes though release or reuptake in order to keep the system safe. Regarding to the wide range of ELF-EMF acquired in this study, the obtained outcomes have potential for developing treatments based on ELF-EMF for some neurological diseases; however, in vivo experiments on the cross linking responses between glutamatergic and cholinergic systems in the presence of ELF-EMF would be needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Simko M, Mattsson MO (2004) Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem 93:83–92

    Article  CAS  PubMed  Google Scholar 

  2. International Agency for Research on Cancer (2002) IARC monographs on the evaluation of carcinogenic risks to humans. Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields, vol 80. International Agency for Research on Cancer. Distributed by IARC Press and by the World Health Organization, Lyon, France

  3. Simko M (2007) Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14:1141–1152

    Article  CAS  PubMed  Google Scholar 

  4. Rollwitz J, Lupke M, Simko M (2004) Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim Biophys Acta 1674:231–238

    Article  CAS  PubMed  Google Scholar 

  5. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50

    Article  CAS  PubMed  Google Scholar 

  6. Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163

    Article  CAS  PubMed  Google Scholar 

  7. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 discussion S36–S28

    Article  CAS  PubMed  Google Scholar 

  8. Robberecht W (2000) Oxidative stress in amyotrophic lateral sclerosis. J Neurol 247(Suppl 1):I1–I6

    Article  PubMed  Google Scholar 

  9. Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225–243

    Article  CAS  PubMed  Google Scholar 

  10. Bonhomme-Faivre L, Marion S, Bezie Y, Auclair H, Fredj G, Hommeau C (1998) Study of human neurovegetative and hematologic effects of environmental low-frequency (50-Hz) electromagnetic fields produced by transformers. Arch Environ Health 53:87–92

    Article  CAS  PubMed  Google Scholar 

  11. Bersani F, Marinelli F, Ognibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM (1997) Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18:463–469

    Article  CAS  PubMed  Google Scholar 

  12. Sandyk R, Tsagas N, Anninos PA, Derpapas K (1992) Magnetic fields mimic the behavioral effects of REM sleep deprivation in humans. Int J Neurosci 65:61–68

    Article  CAS  PubMed  Google Scholar 

  13. Szemerszky R, Zelena D, Barna I, Bardos G (2010) Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats. Brain Res Bull 81:92–99

    Article  CAS  PubMed  Google Scholar 

  14. Lacy-Hulbert A, Metcalfe JC, Hesketh R (1998) Biological responses to electromagnetic fields. FASEB J 12:395–420

    CAS  PubMed  Google Scholar 

  15. Ciombor DM, Aaron RK (2005) The role of electrical stimulation in bone repair. Foot Ankle Clin 10:579–593 vii

    Article  PubMed  Google Scholar 

  16. Jasti AC, Wetzel BJ, Aviles H, Vesper DN, Nindl G, Johnson MT (2001) Effect of a wound healing electromagnetic field on inflammatory cytokine gene expression in rats. Biomed Sci Instrum 37:209–214

    CAS  PubMed  Google Scholar 

  17. Olney RK (2002) Transcranial magnetic stimulation: pro. Amyotroph Lateral Scler Other Motor Neuron Disord 3(Suppl 1):S111

    Article  PubMed  Google Scholar 

  18. Barth A, Ponocny I, Ponocny-Seliger E, Vana N, Winker R (2010) Effects of extremely low-frequency magnetic field exposure on cognitive functions: results of a meta-analysis. Bioelectromagnetics 31:173–179

    PubMed  Google Scholar 

  19. Vazquez-Garcia M, Elias-Vinas D, Reyes-Guerrero G, Dominguez-Gonzalez A, Verdugo-Diaz L, Guevara-Guzman R (2004) Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol Behav 82:685–690

    Article  CAS  PubMed  Google Scholar 

  20. Jenrow KA, Zhang X, Renehan WE, Liboff AR (1998) Weak ELF magnetic field effects on hippocampal rhythmic slow activity. Exp Neurol 153:328–334

    Article  CAS  PubMed  Google Scholar 

  21. Mathie A, Kennard LE, Veale EL (2003) Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects. Radiat Prot Dosimetry 106:311–316

    Article  CAS  PubMed  Google Scholar 

  22. Tasset I, Medina FJ, Jimena I, Aguera E, Gascon F, Feijoo M, Sanchez-Lopez F, Luque E, Pena J, Drucker-Colin R, Tunez I (2012) Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. Neuroscience 209:54–63

    Article  CAS  PubMed  Google Scholar 

  23. Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F (2009) Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol 219:334–343

    Article  PubMed  Google Scholar 

  24. Afrasiabi A, Riazi GH, Dadras A, Tavili E, Ghalandari B, Naghshineh A, Mobasheri H, Ahmadian S (2014) Electromagnetic fields with 217 Hz and 0.2 mT as hazardous factors for tubulin structure and assembly (in vitro study). J Iran Chem Soc 11:1295–1304

    Article  CAS  Google Scholar 

  25. Chance WT, Grossman CJ, Newrock R, Bovin G, Yerian S, Schmitt G, Mendenhall C (1995) Effects of electromagnetic fields and gender on neurotransmitters and amino acids in rats. Physiol Behav 58:743–748

    Article  CAS  PubMed  Google Scholar 

  26. Lai H, Carino M (1999) 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration. Bioelectromagnetics 20:284–289

    Article  CAS  PubMed  Google Scholar 

  27. Testylier G, Tonduli L, Malabiau R, Debouzy JC (2002) Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics 23:249–255

    Article  CAS  PubMed  Google Scholar 

  28. Afrasiabi A, Riazi GH, Abbasi S, Dadras A, Ghalandari B, Seidkhani H, Modaresi SM, Masoudian N, Amani A, Ahmadian S (2014) Synaptosomal acetylcholinesterase activity variation pattern in the presence of electromagnetic fields. Int J Biol Macromol 65:8–15

    Article  CAS  PubMed  Google Scholar 

  29. Headley PM, Grillner S (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sci 11:205–211

    Article  CAS  PubMed  Google Scholar 

  30. Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47

    Article  CAS  PubMed  Google Scholar 

  31. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  32. Pitsikas N (2013) The metabotropic glutamate receptors: potential drug targets for the treatment of anxiety disorders? Eur J Pharmacol 723:181–184

    Article  PubMed  Google Scholar 

  33. Linden A-M, Schoepp DD (2006) Metabotropic glutamate receptor targets for neuropsychiatric disorders. Drug Discov Today Ther Strateg 3:507–517

    Article  Google Scholar 

  34. Wieronska JM, Pilc A (2009) Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 55:85–97

    Article  CAS  PubMed  Google Scholar 

  35. Tokita K, Yamaji T, Hashimoto K (2012) Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 100:688–704

    Article  CAS  PubMed  Google Scholar 

  36. Buckingham SC, Robel S (2013) Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem Int 63:696–701

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402

    Article  CAS  PubMed  Google Scholar 

  38. Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E (2012) New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 100:752–774

    Article  CAS  PubMed  Google Scholar 

  39. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595

    Article  CAS  PubMed  Google Scholar 

  40. Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766

    Article  CAS  PubMed  Google Scholar 

  41. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  CAS  PubMed  Google Scholar 

  42. Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 18:S15–S21

    Article  PubMed  Google Scholar 

  43. Caudle WM, Zhang J (2009) Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol 220:230–233

    Article  CAS  PubMed  Google Scholar 

  44. Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  CAS  PubMed  Google Scholar 

  45. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    Article  CAS  PubMed  Google Scholar 

  46. Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9:467–474

    Article  PubMed  Google Scholar 

  47. Cortese BM, Phan KL (2005) The role of glutamate in anxiety and related disorders. CNS Spectr 10:820–830

    PubMed  Google Scholar 

  48. Mody I, MacDonald JF (1995) NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 16:356–359

    Article  CAS  PubMed  Google Scholar 

  49. Chu LY, Lee JH, Nam YS, Lee YJ, Park WH, Lee BC, Kim D, Chung YH, Jeong JH (2011) Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum. Gen Physiol Biophys 30:415–421

    Article  CAS  PubMed  Google Scholar 

  50. Jelenkovic A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, Prolic Z (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 68:355–360

    Article  CAS  PubMed  Google Scholar 

  51. Lee BC, Johng HM, Lim JK, Jeong JH, Baik KY, Nam TJ, Lee JH, Kim J, Sohn UD, Yoon G, Shin S, Soh KS (2004) Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 73:43–48

    Article  CAS  PubMed  Google Scholar 

  52. Akdag MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taskin A (2010) Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol Trace Elem Res 138:238–249

    Article  CAS  PubMed  Google Scholar 

  53. Falone S, Mirabilio A, Carbone MC, Zimmitti V, Di Loreto S, Mariggio MA, Mancinelli R, Di Ilio C, Amicarelli F (2008) Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol 40:2762–2770

    Article  CAS  PubMed  Google Scholar 

  54. Kabuto H, Yokoi II, Ogawa N, Mori A, Liburdy RP (2001) Effects of magnetic fields on the accumulation of thiobarbituric acid reactive substances induced by iron salt and H(2)O(2) in mouse brain homogenates or phosphotidylcholine. Pathophysiology 7:283–288

    Article  CAS  PubMed  Google Scholar 

  55. Tunez I, Drucker-Colin R, Jimena I, Medina FJ, Munoz Mdel C, Pena J, Montilla P (2006) Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. J Neurochem 97:619–630

    Article  CAS  PubMed  Google Scholar 

  56. Tunez I, Montilla P, del Carmen Munoz M, Medina FJ, Drucker-Colin R (2006) Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci Res 56:91–95

    Article  CAS  PubMed  Google Scholar 

  57. Dodd PR, Hardy JA, Oakley AE, Edwardson JA, Perry EK, Delaunoy JP (1981) A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res 226:107–118

    Article  CAS  PubMed  Google Scholar 

  58. Dodd P, Hardy JA, Oakley AE, Strong AJ (1981) Synaptosomes prepared from fresh human cerebral cortex; morphology, respiration and release of transmitter amino acids. Brain Res 224:419–425

    Article  CAS  PubMed  Google Scholar 

  59. Zaleska MM, Nagy K, Floyd RA (1989) Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochem Res 14:597–605

    Article  CAS  PubMed  Google Scholar 

  60. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  61. Bai F, Witzmann FA (2007) Synaptosome proteomics. Subcell Biochem 43:77–98

    Article  PubMed Central  PubMed  Google Scholar 

  62. Greber S, Schwarzer C, Sperk G (1994) Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br J Pharmacol 113:737–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Rowe RC, Roberts RJ (1998) Intelligent Software for Product Formulation. Taylor & Francis Ltd., London

    Google Scholar 

  64. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727

    Article  CAS  PubMed  Google Scholar 

  65. Ali HS, Blagden N, York P, Amani A, Brook T (2009) Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors. Eur J Pharm Sci 37:514–522

    Article  CAS  PubMed  Google Scholar 

  66. Floyd CE Jr, Lo JY, Yun AJ, Sullivan DC, Kornguth PJ (1994) Prediction of breast cancer malignancy using an artificial neural network. Cancer 74:2944–2948

    Article  PubMed  Google Scholar 

  67. Takayama K, Fujikawa M, Nagai T (1999) Artificial neural network as a novel method to optimize pharmaceutical formulations. Pharm Res 16:1–6

    Article  CAS  PubMed  Google Scholar 

  68. Intelligensys (2008) http://www.intelligensys.co.uk/models/extras/INForm_intro_files/frame.htm (retrieved 10.09.2008)

  69. Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H (1997) Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm Dev Technol 2:111–121

    Article  CAS  PubMed  Google Scholar 

  70. Ledda M, Carlo FD, D’Emilia E, Giuliani L, Grimaldi S, Lisi A (2010) Extremely-low frequency magnetic field modulates differentiation and maturation of human and rat primary and multipotent stem cells. Eur J Oncol 5:135–147

    Google Scholar 

  71. Wieraszko A, Armani J, Maqsood N, Raja H, Philip S (2005) Modification of the synaptic glutamate turnover in the hippocampal tissue exposed to low-frequency, pulsed magnetic fields. Brain Res 1052:232–235

    Article  CAS  PubMed  Google Scholar 

  72. Capone F, Dileone M, Profice P, Pilato F, Musumeci G, Minicuci G, Ranieri F, Cadossi R, Setti S, Tonali PA, Di Lazzaro V (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm 116:257–265

    Article  CAS  PubMed  Google Scholar 

  73. Barbier E, Dufy B, Veyret B (1996) Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 17:303–311

    Article  CAS  PubMed  Google Scholar 

  74. Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315

    Article  CAS  PubMed  Google Scholar 

  75. Calvo AC, MaJ Azanza (1999) Synaptic neurone activity under applied 50 Hz alternating magnetic fields. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124:99–107

    Article  CAS  PubMed  Google Scholar 

  76. Singh P, Mann KA, Mangat HK, Kaur G (2003) Prolonged glutamate excitotoxicity: effects on mitochondrial antioxidants and antioxidant enzymes. Mol Cell Biochem 243:139–145

    Article  CAS  PubMed  Google Scholar 

  77. Feychting M, Jonsson F, Pedersen NL, Ahlbom A (2003) Occupational magnetic field exposure and neurodegenerative disease. Epidemiology 14:413–419 discussion 427–418

    PubMed  Google Scholar 

  78. Qiu C, Fratiglioni L, Karp A, Winblad B, Bellander T (2004) Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiology 15:687–694

    Article  PubMed  Google Scholar 

  79. Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, van Kranen-Mastenbroek V, Weber W, Visser-Vandewalle V (2007) Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Neurosurgery 61:346–355 discussion 355–347

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Neuroorganic Lab at Institute of Biochemistry and Biophysics, University of Tehran and BioIdeas Lab at Knowledge Management Devision in Biological Sprited Ideas Company, Tehran, Iran. We are thankful to Mohamadreza Abdolahzade and Hosein Toossi for their help in preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Riazi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masoudian, N., Riazi, G.H., Afrasiabi, A. et al. Variations of Glutamate Concentration Within Synaptic Cleft in the Presence of Electromagnetic Fields: An Artificial Neural Networks Study. Neurochem Res 40, 629–642 (2015). https://doi.org/10.1007/s11064-014-1509-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1509-6

Keywords

  • Glutamate
  • Excitotoxicity
  • Neurodegenerative diseases
  • ELF-EMF
  • High performance liquid chromatography (HPLC)
  • Artificial neural networks (ANNs)