Skip to main content
Log in

Functional and Structural Recovery of the Injured Spinal Cord in Rats Treated with Gonadotropin-Releasing Hormone

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Several studies have shown that gonadotropin-releasing hormone (GnRH) have extra-pituitary roles, including neurotrophic effects. This study was to evaluate the effects of GnRH treatment on the spinal cord injury (SCI) of rats. Ovariectomized rats were divided into: sham SCI surgery (Sham), SCI treated with saline solution (SCI + SS), and SCI treated with GnRH (SCI + GnRH). The SCI was induced by compression. One day after the lesion, SCI + GnRH group was injected with GnRH (60 µg/kg/twice/day; i.m.) for 15 days and the other groups with saline solution. To kinematic gait analysis, length and velocity of the stride were measured. In spinal cord, axonal morphometry and spared white and gray matter were analyzed by histochemistry. Protein expression of spinophilin was evaluated by western blot. The results showed that, 5 weeks after the injury, the group of animals treated with GnRH, significantly increased the length and velocity of the stride compared to SCI + SS group and they were similar to Sham group. In spinal cord, GnRH treatment increased the number and caliber of nerve axons and in the case of white matter, spared tissue was significantly higher than those animals treated with saline solution. The expression of spinophilin in spinal cord of SCI + GnRH group was slightly increased with respect to those not treated. In conclusion, GnRH treatment improves recovery of gait and decreases histopathological damage in the injured spinal cord of rat. These findings suggest that GnRH acts as a neurotrophic factor and can be used as a potential therapeutic agent for treatment of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheung LW, Wong AS (2008) Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 275:5479–5495. doi:10.1111/j.1742-4658.2008.06677

    Article  CAS  PubMed  Google Scholar 

  2. Quintanar JL, Salinas E (2008) Neurotrophic effects of GnRH on neurite outgrowth and neurofilament protein expression in cultured cerebral cortical neurons of rat embryos. Neurochem Res 33:1051–1056. doi:10.1007/s11064-007-9549-9

    Article  CAS  PubMed  Google Scholar 

  3. Walters K, Wegorzewska IN, Chin YP, Parikh MG, Wu TJ (2008) Luteinizing hormone-releasing hormone I (LHRH-I) and its metabolite in peripheral tissues. Exp Biol Med 233:123–130. doi:10.3181/0707-MR-201

    Article  CAS  Google Scholar 

  4. Skinner DC, Albertson AJ, Navratil A, Smith A, Mignot M, Talbott H, Scanlan-Blake N (2009) Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis. J Neuroendocrinol 21:282–292. doi:10.1111/j.1365-2826.2009.01842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Aguilar-Rojas A, Huerta-Reyes M (2009) Human gonadotropin-releasing hormone receptor-activated cellular functions and signaling pathways in extra-pituitary tissues and cancer cells. Oncol Rep 22:981–990. doi:10.3892/or_00000525

    Article  CAS  PubMed  Google Scholar 

  6. Park MK, Kanaho Y, Enomoto M (2013) Regulation of the cell proliferation and migration as extra-pituitary functions of GnRH. Gen Comp Endoc 181:259–264. doi:10.1016/j.ygcen.2012.09.023

    Article  CAS  Google Scholar 

  7. Jennes L, Eyigor O, Janovick JA, Conn PM (1997) Brain gonadotropin releasing hormone receptors: localization and regulation. Recent Prog Horm Res 52:475–490

    CAS  PubMed  Google Scholar 

  8. Quintanar JL, Salinas E, González R (2007) Expression of gonadotropin-releasing hormone receptor in cerebral cortical neurons of embryos and adult rats. Neurosci Lett 411:22–25

    Article  CAS  PubMed  Google Scholar 

  9. Albertson AJ, Talbott H, Wang Q, Jensen D, Skinner DC (2008) The gonadotropin-releasing hormone type I receptor is expressed in the mouse cerebellum. Cerebellum 7:379–384. doi:10.1007/s12311-008-0038-8

    Article  CAS  PubMed  Google Scholar 

  10. Albertson AJ, Navratil A, Mignot M, Dufourny L, Cherrington B, Skinner DC (2008) A immunoreactive GnRH type I receptors in the mouse and sheep brain. J Chem Neuroanat 35:326–333. doi:10.1016/j.jchemneu.2008.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dolan S, Evans NP, Richter TA, Nolan AM (2003) Expression of gonadotropin-releasing hormone and gondotropin-releasing hormone receptor in sheep spinal cord. Neurosci Lett 346:120–122. doi:10.16/S0304-3940(03)00594-9

    Article  CAS  PubMed  Google Scholar 

  12. Quintanar JL, Salinas E, González R (2009) Gonadotropin-releasing hormone receptor in spinal cord neurons of embryos and adult rats. Neurosci Lett 461:21–24. doi:10.1016/j.neulet.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  13. Rossignol S, Barrière G, Frigon A, Barthélemy D, Bouyer L, Provencher J, Leblond H, Bernard G (2008) Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions. Brain Res Rev 57:228–240. doi:10.1016/j.brainresrev.2007.06.019

    Article  PubMed  Google Scholar 

  14. Rossignol S, Frigon A, Barrière G et al (2011) Spinal plasticity in the recovery of locomotion. Prog Brain Res 188:229–241. doi:10.1016/B978-0-444-53825-3.00021-8

    Article  PubMed  Google Scholar 

  15. Guzmán-Soto I, Salinas E, Hernández-Jasso I, Quintanar JL (2012) Leuprolida acetate, a GnRH agonist, improves experimental autoimmune encephalomyelitis: a possible therapy for multiple sclerosis. Neurochem Res 37:2190–2197. doi:10.1007/s11064-012-0842

    Article  PubMed  Google Scholar 

  16. Calderón-Vallejo D, Quintanar JL (2012) Gonadotropin-releasing hormone treatment improves locomotor activity, urinary function and neurofilament protein expression after spinal cord injury in ovariectomized rats. Neurosci Lett 515:187–190. doi:10.1016/j.neulet.2012.03.052

    Article  PubMed  Google Scholar 

  17. Samantaray S, Sribnick EA, Das A, Thakore NP, Matzelle D, Yu SP, Ray SK, Wei L, Banik NL (2010) Neuroprotective efficacy of estrogen in experimental spinal cord injury in rats. Ann N Y Acad Sci 1199:90–94. doi:10.1111/j.1749-6632.2009.05357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. De Nicola AF, Labombarda F, Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M (2009) Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 30:173–187. doi:10.1016/j.yfrne.2009.03.001

    Article  PubMed  Google Scholar 

  19. Vanický I, Urdzíková L, Saganová K, Cízková D, Gálik J (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotraum 18:1399–1407. doi:10.1089/08977150152725687

    Article  Google Scholar 

  20. Quintanar JL, Salinas E, Chávez-Morales RM, Quintanar-Stephano A (2004) Pituitary synaptic protein SNAP-25 sensitive to GnRH is necessary for LH release. Endocr Regul 38:1–6

    CAS  PubMed  Google Scholar 

  21. Quintanar JL, Salinas E, Quintanar-Stephano A (2011) Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Neuropeptides 45:43–48. doi:10.1016/j.npep.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  22. Parker AJ, Clarke KA (1990) Gait topography in rat locomotion. Physiol Behav 48:41–47. doi:10.16/0031-9384(90)90258-6

    Article  CAS  PubMed  Google Scholar 

  23. Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotraum 18:187–201. doi:10.1089/08977150150502613

    Article  CAS  Google Scholar 

  24. Curt A, Dietz MD (1997) Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil 78:39–43. doi:10.1016/S0003-9993(97)90007-1

    Article  CAS  PubMed  Google Scholar 

  25. Basso M (2000) Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys Therap 80:808–817

    CAS  Google Scholar 

  26. Metz GA, Merkler D, Dietz V, Schwab ME, Fouad K (2000) Efficient testing of motor function in spinal cord injured rats. Brain Res 883:165–177. doi:10.1016/S0006-8993(00)02778-5

    Article  CAS  PubMed  Google Scholar 

  27. Han X, Yang N, Xu Y, Zhu J, Chen Z, Liu Z, Dang G, Song C (2011) Simvastatin treatment improves functional recovery after experimental spinal cord injury by upregulating the expression of BDNF and GDNF. Neurosci Lett 487:255–259. doi:10.1016/j.neulet.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  28. Quintanar JL, Salinas E (2010) Experimental autoimmune encephalomyelitis: a neurological challenge for gonadotropin-releasing hormone (GnRH). Open Neuroendocrinol J 3:208–214. doi:10.2174/1876528901003010208

    CAS  Google Scholar 

  29. Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhuo M, Allen PB, Ouimet CC, Greengard P (2000) Spinophilin regulates the formation and function of dendritic spines. PNAS 97:9287–9292. doi:10.1073/pnas.97.16.9287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kelker MS et al (2007) Structural basis for spinophilin-neurabin receptor interaction. Biochemistry 46:2333–2344. doi:10.1021/bi602341c

    Article  CAS  PubMed  Google Scholar 

  31. Schang AL, Ngô-Muller V, Bleux C et al (2011) GnRH receptor gene expression in the developing rat hippocampus: transcriptional regulation and potential roles in neuronal plasticity. Endocrinology 152:568–580. doi:10.1210/en.2010-0840

    Article  CAS  PubMed  Google Scholar 

  32. Hollis ER, Tuszynski MH (2011) Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 8:694–703. doi:10.1007/s13311-011-0074-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277. doi:10.1038/nn1195

    Article  CAS  PubMed  Google Scholar 

  34. Barrera CM, Kastin AJ, Fasold MB, Banks WA (1991) Bidirectional saturable transport of LHRH across the blood–brain barrier. Am J Physiol 261:E312–E318

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to Dr. Kalman Kovacs for reviewing the manuscript and Dra. Yolanda Romo Lozano, Dra. Mariela Jiménez Vargas, Dra. Eva Salinas Miralles and Manuel Tinajero for the methodological support. We thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for scholarship 19919.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Luis Quintanar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón-Vallejo, D., Quintanar-Stephano, A., Hernández-Jasso, I. et al. Functional and Structural Recovery of the Injured Spinal Cord in Rats Treated with Gonadotropin-Releasing Hormone. Neurochem Res 40, 455–462 (2015). https://doi.org/10.1007/s11064-014-1486-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1486-9

Keywords

Navigation