Skip to main content

Advertisement

Log in

Protein Phosphatase 2A is Involved in the Tyrosine Hydroxylase Phosphorylation Regulated by α-Synuclein

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

α-Synuclein (α-Syn) plays a crucial role in the pathophysiology of Parkinson’s disease (PD), the degeneration of dopaminergic neurons. Previous studies have shown that α-Syn regulates dopamine synthesis by binding to and inhibiting tyrosine hydroxylase (TH). In neurons, protein phosphatases (PPs) play a prominent role in directing signaling toward survival or degeneration. This study was to re-evaluate whether α-Syn could regulate the tyrosine hydroxylase phosphorylation by protein phosphatase-2A (PP2A) in dopaminergic MN9D cells and cortex neurons. Our data demonstrated for the first time that α-Syn stimulates PP2A activity and reduces phosphorylation of TH through regulating the methylation of PP2A in dopaminergic MN9D cells and primary cortex neurons. Increased PP2A activity and reduced phosphorylation of PP2A at Y307 (inactive form of PP2A) were observed in α-Syn overexpression dopaminergic cells (Syn) and primary cortex neurons, and the TH phosphorylation relieved by enhancing PP2A methylation in Syn group could be abated by using PP inhibitors, okadaic acid (OKA). OKA could reduce the cell damage and cell apoptosis induced by α-Syn. Thus our findings may provide an insight into the complicated pathogenesis of PD as well as some clues to the development of novel therapeutic strategies targeting at PP2A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cegielska A, Shaffer S, Derua R, Goris J, Virshup DM (1994) Different oligomeric forms of protein phosphatase 2A activate and inhibit simian virus 40 DNA replication. Mol Cell Biol 7:4616–4623

    Google Scholar 

  2. Chen J, Martin BL, Brautigan DL (1992) Regulation of protein serine–threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264

    Article  CAS  PubMed  Google Scholar 

  3. Frasca D, Romero M, Landin AM, Diaz A, Riley RL, Blomberg BB (2010) Protein phosphatase 2A (PP2A) is increased in old murine B cells and mediates p38 MAPK/tristetraprolin dephosphorylation and E47 mRNA instability. Mech Ageing Dev 131:306–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Geng X, Lou H, Wang J et al (2010) α-Synuclein binds the KATP channel at insulin secretory granules and inhibits insulin secretion. Am J Physiol Endocrinol Metab 300:E276–E286

    Article  PubMed  Google Scholar 

  5. Gentry MS, Hallberg RL (2002) Localization of Saccharomyces cerevisiae protein phosphatase 2A subunits throughout mitotic cell cycle. Mol Biol Cell 13(10):3477–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277:48984–48992

    Article  CAS  PubMed  Google Scholar 

  7. Lao DH, Yusoff P, Chandramouli S et al (2007) Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem 282:9117–9126

    Article  CAS  PubMed  Google Scholar 

  8. Leal RB, Sim AT, Gonçalves CA, Dunkley PR (2002) Tyrosine hydroxylase dephosphorylation by protein phosphatase 2A in bovine adrenal chromaffin cells. Neurochem Res 27(3):207–213

    Article  CAS  PubMed  Google Scholar 

  9. Lechward K, Awotunde OS, Swiatek W, Muszyńska G (2001) Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol 48(4):921–933

    CAS  PubMed  Google Scholar 

  10. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926

    Article  CAS  PubMed  Google Scholar 

  11. Lee HJ, Suk JE, Lee KW et al (2011) Transmission of synucleinopathies in the enteric nervous system of A53T alpha-synuclein transgenic mice. Exp Neurobiol 20(4):181–188

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lee J, Stock J (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem 268(26):19192–19195

    CAS  PubMed  Google Scholar 

  13. Letourneux C, Rocher G, Porteu F (2006) B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25(4):727–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Liu D, Jin L, Wang H et al (2008) Silencing α-synuclein gene expression enhances tyrosine hydroxylase activity in MN9D cells. Neurochem Res 33:1401–1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liu GP, Wei W, Zhou X et al (2012) I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. Neurobiol Aging 33(2):254–264

    Article  PubMed  Google Scholar 

  16. Lou H, Montoya SE, Alerte TN et al (2010) Serine 129 phosphorylation reduces α-synuclein’s ability to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. J Biol Chem 285(23):17648–17661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Longin S, Zwaenepoel K, Martens E et al (2008) Spatial control of protein phosphatase 2A (de)methylation. Exp Cell Res 314(1):68–81

    Article  CAS  PubMed  Google Scholar 

  18. Lu J, Kovach JS, Johnson F et al (2009) Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci USA 106:11697–11702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ogris E, Mudrak I, Mak E, Gibson D, Pallas DC (1999) Catalytically inactive protein phosphatase 2A can bind to polyomavirus middle tumor antigen and support complex formation with pp60(c-src). J Virol 73(9):7390–7398

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118:3523–3530

    Article  CAS  PubMed  Google Scholar 

  21. Perez RG, Hastings TG (2004) Could a loss of alpha-synuclein function put dopaminergic neurons at risk? J Neurochem 89:1318–1324

    Article  CAS  PubMed  Google Scholar 

  22. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099

    CAS  PubMed  Google Scholar 

  23. Rochet JC, Outeiro TF, Conway KA et al (2004) Interactions among α-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci 23:23–34

    Article  CAS  PubMed  Google Scholar 

  24. Ruvolo PP, Clark W, Mumby M, Gao F, May WS (2002) A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277(25):22847–22852

    Article  CAS  PubMed  Google Scholar 

  25. Saraf A, Oberg EA, Strack S (2010) Molecular determinants for PP2A substrate specificity: charged residues mediate dephosphorylation of tyrosine hydroxylase by the PP2A/B’ regulatory subunit. Biochemistry 49(5):986–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Senior SL, Ninkina N, Deacon R et al (2008) Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur J Neurosci 27:947–957

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sidhu A, Wersinger C, Vernier P (2004) Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 18:637–647

    Article  CAS  PubMed  Google Scholar 

  28. Sim AT (1991) The regulation and function of protein phosphatases in the brain. Mol Neurobiol 5:229–246

    Article  CAS  PubMed  Google Scholar 

  29. Sontag E, Hladik C, Montgomery L et al (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63(10):1080–1091

    CAS  PubMed  Google Scholar 

  30. Sontag E, Nunbhakdi-Craig V, Lee G et al (1999) Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274(36):25490–25498

    Article  CAS  PubMed  Google Scholar 

  31. Sontag JM, Nunbhakdi-Craig V, Mitterhuber M, Ogris E, Sontag E (2010) Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. J Neurochem 115:1455–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  33. Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE (1997) Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain Res 49:15–28

    Article  CAS  PubMed  Google Scholar 

  34. Swingle M, Ni L, Honkanen RE (2007) Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol Biol 365:23–38

    PubMed Central  PubMed  Google Scholar 

  35. Tanimukai H, Grundke-Iqbal I, Iqbal K (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am J Pathol 166(6):1761–1771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tehranian R, Montoya SE, Van Laar AD, Hastings TG, Perez RG (2006) Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J Neurochem 99:1188–1196

    Article  CAS  PubMed  Google Scholar 

  37. Veeranna Yang DS, Lee JH et al (2011) Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiol Aging 32(11):2016–2029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yasuda T, Miyachi S, Kitagawa R et al (2007) Neuronal specificity of alpha-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience 144:743–753

    Article  CAS  PubMed  Google Scholar 

  39. Yavich L, Tanila H, Vepsäläinen S, Jäkälä P (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24:11165–11170

    Article  CAS  PubMed  Google Scholar 

  40. Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147:S287–S296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhu Y, Duan C, Lü L et al (2011) α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator. Int J Biochem Cell Biol 43(5):732–741

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Basic Research Program of China (2011CB504103, 2012CB722407). The authors are Grateful for support from Key Laboratory for Neurodegenerative Disease of the Ministry of Education (2011SJBX03) and Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders (2011SJZS02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Yazhuo or Yang Hui.

Additional information

Gao Hua and Lan Xiaolei have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2014_1477_MOESM1_ESM.tif

Supplementary 1 α-synuclein didn’t alter the protein level of AADC or MAO. A: The AADC protein level was measured by western blot. There was no statistical difference of AADC in Syn group or Sh-Syn group. B: Monoamine oxidase plays an essential role in the catabolism of neurotransmitter amines in central and peripheral tissues. There was no statistical difference of MAO (TIFF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, G., Xiaolei, L., Weiwei, Y. et al. Protein Phosphatase 2A is Involved in the Tyrosine Hydroxylase Phosphorylation Regulated by α-Synuclein. Neurochem Res 40, 428–437 (2015). https://doi.org/10.1007/s11064-014-1477-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1477-x

Keywords

Navigation