Skip to main content

Alteration in 5-HT2C, NMDA Receptor and IP3 in Cerebral Cortex of Epileptic Rats: Restorative Role of Bacopa monnieri

Abstract

Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aithal HN, Sirsi M (1961) Pharmacological investigation on Herpestis monniera. Indian J Pharmacol 23:2–5

    Google Scholar 

  2. Bhattacharya SK, Ghosal S (1998) Anxiolytic activity of a standardized extract of Bacopa monniera: an experimental study. Phytomedicine 9:207–211

    Google Scholar 

  3. Caramaschi D, de Boer SF, Koolhaas JM (2007) Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison. Physiol Behav 90:590–601

    CAS  PubMed  Article  Google Scholar 

  4. Carr DB, Cooper DC, Ulrich SL, Spruston ND, Surmeier J (2002) Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J Neurosci 22:6846–6855

    CAS  PubMed  Google Scholar 

  5. Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35:1–11

    CAS  PubMed  Article  Google Scholar 

  6. Chatterjee M, Verma P, Palit G (2010) Comparative evaluation of Bacopa monniera and Panax quniquefolium in experimental anxiety and depressive models in mice. Indian J Exp Biol 48(3):306–313

    PubMed  Google Scholar 

  7. Clinkers R, Gheuens S, Smolders I, Meurs A, Ebinger G, Michotte Y (2005) In vivo modulatory action of extracellular glutamate on the anticonvulsant effects of hippocampal dopamine and serotonin. Epilepsia 46:828–836

    Article  Google Scholar 

  8. de Sousa FC, Leite CP, de Melo CT, de Araújo FL, Gutierrez SJ, Barbosa-Filho JM, Fonteles MM, de Vasconcelos SM, de Barros Viana GS (2007) Evaluation of effects of N-(2-hydroxybenzoyl) tyramine (riparin II) from Aniba riparia (NEES) MEZ (Lauracea) in anxiety models in mice. Biol Pharm Bull 30:1212–1216

    PubMed  Article  Google Scholar 

  9. Fone KCF, Shalders K, Fox ZD, Arthur R, Marsden CA (1996) Increased 5-HT2C receptor responsiveness occurs on rearing rats in social isolation. Psychopharmacologia 123:346–352

    CAS  Article  Google Scholar 

  10. Giovacchini G, Toczek MT, Bonwetsch R, Bagic A, Lang L, Fraser C, Reeves-Tyer P, Herscovitch P, Eckelman WC, Carson RE, Theodore WH (2005) 5-HT 1A receptors are reduced in temporal lobe epilepsy after partial-volume correction. J Nucl Med 46(7):1128–1135

    PubMed Central  PubMed  Google Scholar 

  11. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain: the disposition of [3H] Norepinephrine, [3H] DOPA in various regions of the brain. J Neurochem 13:655–669

    CAS  PubMed  Article  Google Scholar 

  12. Herrick-Davis K, Grinde E, Niswender CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem 73:1711–1717

    CAS  PubMed  Article  Google Scholar 

  13. Hoffman DJ, Zanelli SA, Kubin JM, Om P, Maria DP (1996) The in vivo effect of bilirubin on the N-Methyl-d-Aspartate receptor/ion channel complex in the brains of newborn piglets. Ped Res 40:804–808

    CAS  Article  Google Scholar 

  14. Holmes A, Rodgers RJ (1998) Responses of Swiss-Webster mice to repeated pa4cdlus-maze experience: further evidence for a qualitative shift in emotional state? Pharmacol Biochem Behav 60:473–488

    CAS  PubMed  Article  Google Scholar 

  15. Holmes KH, Keele NB, Shinnick-Gallagher P (1996) Loss of mGluR-mediated hyperpolarizations and increase in mGluR depolarizations in basolateral amygdala neurons in kindling-induced epilepsy. J Neurophysiol 76:2808–2812

    CAS  PubMed  Google Scholar 

  16. Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-d-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 93:11962–11967

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Lisman JE, Jean-Marc NF, Wang X-J (1998) A role for NMDA-receptor channels in working memory. Nature neuroscience 1:273–275

    CAS  PubMed  Article  Google Scholar 

  18. Lo´pez-Bayghen E, Espinoza-Rojo M, Ortega A (2003) Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells. Mol Br Res 115:1–9

    Article  Google Scholar 

  19. Lowry OH, Roserbrough NJ, Farr AL, Randall RJ (1951) Protein measurements and folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Mahanty NK, Sah P (1999) Excitatory synaptic inputs to pyramidal neurons of the lateral amygdala. Eur J Neurosci 11:1217–1222

    CAS  PubMed  Article  Google Scholar 

  21. Mathern GW, Pretorius JK, Mendoza D, Lozada A, Leite JP, Chimelli L, Fried I, Sakamoto AC, Assirati JA (1998) Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. J Neuropathol Exp Neurol 57(6):615–634

    CAS  PubMed  Article  Google Scholar 

  22. Maura G, Marcoli M, Pepicelli O, Rosu C, Viola C, Raiteri M (2000) Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT2C and 5-HT1A receptors. Br J Pharmacol 130:1853–1858

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS (2003) Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 476:3–16

    CAS  PubMed  Article  Google Scholar 

  24. Olney J, Farber N (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    CAS  PubMed  Article  Google Scholar 

  25. Otoya RE, Seltzer AM, Donoso AO (1997) Acute and long lasting effects of neonatal hypoxia on (+)-3-[135I] MK-801 binding to NMDA brain receptors. Exp Neurol 148:92–99

    CAS  PubMed  Article  Google Scholar 

  26. Paulose CS, Finla C, Reas KS, Krishnakumar A (2008) Neuroprotective role of Bacopa monnieri extract in epilepsy and effect of glucose supplementation during hypoxia: glutamate receptor gene expression. Neurochem Res 33:1663–1671

    CAS  PubMed  Article  Google Scholar 

  27. Pellow S, Chopin P, Files SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosc Meth 14:149–167

    CAS  Article  Google Scholar 

  28. Prakash JC, Sirsi M (1962) Comparative study of the effects of Brahmi (Bacopa monniera) and Chlopromazine on motor learning in rats. J Sci Ind Res 21:93–96

    Google Scholar 

  29. Racine RJ (1972) Modification of seizure activity by electrical stimulation. After discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279

    CAS  PubMed  Article  Google Scholar 

  30. Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1991) Excitatory transmission in the basolateral amygdala. J Neurophysiol 66:986–998

    CAS  PubMed  Google Scholar 

  31. Reas SK, Amee K, Paulose CS (2008) Glutamate receptor gene expression and binding studies in pilocarpine induced epileptic rat: neuroprotective role of Bacopa monnieri extract. Epilep Behav 12:54–60

    Article  Google Scholar 

  32. Rogan MT, Stäubli UV, LeDoux JE (1997) AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci 17:5928–5935

    CAS  PubMed  Google Scholar 

  33. Rosenmund C, Feltz A, Westbrook GL (1995) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol 73:427–430

    CAS  PubMed  Google Scholar 

  34. Sairam K, Dorababu M, Goel RK, Bhattacharya SK (2002) Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 9:207–211

    CAS  PubMed  Article  Google Scholar 

  35. Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    CAS  Article  Google Scholar 

  36. Shanker G, Singh HK (2000) Anxiolytic profile of standardized Brahmi extract. Indian J Pharmacol 32:152

    Google Scholar 

  37. Shanmugasundaram ER, Akbar GK, Shanmugasundaram KR (1991) Brahmighritham. An ayurvedic herbal formula for the control of epilepsy. J Ethnopharmacol 33:269–276

    CAS  PubMed  Article  Google Scholar 

  38. Silver IA, Erecińska M (1992) Relationship between ions and energy metabolism: cerebral calcium movements during ischemia and subsequent recovery. Can J Physiol Pharmacol 70:S190–S193

    PubMed  Article  Google Scholar 

  39. Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    CAS  PubMed  Article  Google Scholar 

  40. Singh HK, Dhawan BN (1997) Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn (Brahmi). Indian J Pharmacol 29:359–365

    Google Scholar 

  41. Smythies J (2005) Serotonin system. Int Rev Neurobiol 64:217–268

    PubMed  Article  Google Scholar 

  42. Spencer S (2007) Epilepsy: clinical observations and novel mechanisms. Lancet Neurol 6:14–16

    PubMed  Article  Google Scholar 

  43. Szyndler J, Wierzba-Bobrowicz T, Skórzewska A, Maciejak P, Walkowiak J, Lechowicz W, Turzyńska D, Bidziński A, Płaźnik A (2005) Behavioral, biochemical and histological studies in a model of pilocarpine-induced spontaneous recurrent seizures. Pharmacol Biochem Behav 81:15–23

    CAS  PubMed  Article  Google Scholar 

  44. Valenti O, Conn PJ, Marino MJ (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors co-expressed in the same neuronal populations. J Cell Physiol 191:125–137

    CAS  PubMed  Article  Google Scholar 

  45. Weinberger DR (1988) Schizophrenia and the frontal lobe. Trends Neurosci 11:367–370

    CAS  PubMed  Article  Google Scholar 

  46. Wesołowska A, Nikiforuk A, Chojnacka-Wójcik E (2006) Anticonvulsant effect of the selective 5-HT1B receptor agonist CP 94253 in mice. Eur J Pharmacol 541:57–63

    PubMed  Article  Google Scholar 

  47. Yu SP, Sensi SL, Canzoniero LM, Buisson A, Choi DW (1997) Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol 499:721–732

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research Grants from DBT, DST, ICMR, Govt. of India and KSCSTE, Govt. of Kerala to Dr. C. S. Paulose. Amee Krishnakumar thanks ICMR, Govt. of India, for Junior Research Fellowship. Anju T R Thanks DBT for DBT Research associateship. Pretty Mary Abraham thanks DST, Govt. of India for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Paulose.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishnakumar, A., Anju, T.R., Abraham, P.M. et al. Alteration in 5-HT2C, NMDA Receptor and IP3 in Cerebral Cortex of Epileptic Rats: Restorative Role of Bacopa monnieri . Neurochem Res 40, 216–225 (2015). https://doi.org/10.1007/s11064-014-1472-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1472-2

Keywords

  • GLAST
  • Elevated plus maze test
  • Pilocarpine