Neurochemical Research

, Volume 40, Issue 1, pp 216–225 | Cite as

Alteration in 5-HT2C, NMDA Receptor and IP3 in Cerebral Cortex of Epileptic Rats: Restorative Role of Bacopa monnieri

  • Amee Krishnakumar
  • T. R. Anju
  • Pretty Mary Abraham
  • C. S. PauloseEmail author
Original Paper


Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex.


GLAST Elevated plus maze test Pilocarpine 



This work was supported by research Grants from DBT, DST, ICMR, Govt. of India and KSCSTE, Govt. of Kerala to Dr. C. S. Paulose. Amee Krishnakumar thanks ICMR, Govt. of India, for Junior Research Fellowship. Anju T R Thanks DBT for DBT Research associateship. Pretty Mary Abraham thanks DST, Govt. of India for Junior Research Fellowship.


  1. 1.
    Aithal HN, Sirsi M (1961) Pharmacological investigation on Herpestis monniera. Indian J Pharmacol 23:2–5Google Scholar
  2. 2.
    Bhattacharya SK, Ghosal S (1998) Anxiolytic activity of a standardized extract of Bacopa monniera: an experimental study. Phytomedicine 9:207–211Google Scholar
  3. 3.
    Caramaschi D, de Boer SF, Koolhaas JM (2007) Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison. Physiol Behav 90:590–601PubMedCrossRefGoogle Scholar
  4. 4.
    Carr DB, Cooper DC, Ulrich SL, Spruston ND, Surmeier J (2002) Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J Neurosci 22:6846–6855PubMedGoogle Scholar
  5. 5.
    Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35:1–11PubMedCrossRefGoogle Scholar
  6. 6.
    Chatterjee M, Verma P, Palit G (2010) Comparative evaluation of Bacopa monniera and Panax quniquefolium in experimental anxiety and depressive models in mice. Indian J Exp Biol 48(3):306–313PubMedGoogle Scholar
  7. 7.
    Clinkers R, Gheuens S, Smolders I, Meurs A, Ebinger G, Michotte Y (2005) In vivo modulatory action of extracellular glutamate on the anticonvulsant effects of hippocampal dopamine and serotonin. Epilepsia 46:828–836CrossRefGoogle Scholar
  8. 8.
    de Sousa FC, Leite CP, de Melo CT, de Araújo FL, Gutierrez SJ, Barbosa-Filho JM, Fonteles MM, de Vasconcelos SM, de Barros Viana GS (2007) Evaluation of effects of N-(2-hydroxybenzoyl) tyramine (riparin II) from Aniba riparia (NEES) MEZ (Lauracea) in anxiety models in mice. Biol Pharm Bull 30:1212–1216PubMedCrossRefGoogle Scholar
  9. 9.
    Fone KCF, Shalders K, Fox ZD, Arthur R, Marsden CA (1996) Increased 5-HT2C receptor responsiveness occurs on rearing rats in social isolation. Psychopharmacologia 123:346–352CrossRefGoogle Scholar
  10. 10.
    Giovacchini G, Toczek MT, Bonwetsch R, Bagic A, Lang L, Fraser C, Reeves-Tyer P, Herscovitch P, Eckelman WC, Carson RE, Theodore WH (2005) 5-HT 1A receptors are reduced in temporal lobe epilepsy after partial-volume correction. J Nucl Med 46(7):1128–1135PubMedCentralPubMedGoogle Scholar
  11. 11.
    Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain: the disposition of [3H] Norepinephrine, [3H] DOPA in various regions of the brain. J Neurochem 13:655–669PubMedCrossRefGoogle Scholar
  12. 12.
    Herrick-Davis K, Grinde E, Niswender CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem 73:1711–1717PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffman DJ, Zanelli SA, Kubin JM, Om P, Maria DP (1996) The in vivo effect of bilirubin on the N-Methyl-d-Aspartate receptor/ion channel complex in the brains of newborn piglets. Ped Res 40:804–808CrossRefGoogle Scholar
  14. 14.
    Holmes A, Rodgers RJ (1998) Responses of Swiss-Webster mice to repeated pa4cdlus-maze experience: further evidence for a qualitative shift in emotional state? Pharmacol Biochem Behav 60:473–488PubMedCrossRefGoogle Scholar
  15. 15.
    Holmes KH, Keele NB, Shinnick-Gallagher P (1996) Loss of mGluR-mediated hyperpolarizations and increase in mGluR depolarizations in basolateral amygdala neurons in kindling-induced epilepsy. J Neurophysiol 76:2808–2812PubMedGoogle Scholar
  16. 16.
    Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-d-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci USA 93:11962–11967PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lisman JE, Jean-Marc NF, Wang X-J (1998) A role for NMDA-receptor channels in working memory. Nature neuroscience 1:273–275PubMedCrossRefGoogle Scholar
  18. 18.
    Lo´pez-Bayghen E, Espinoza-Rojo M, Ortega A (2003) Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells. Mol Br Res 115:1–9CrossRefGoogle Scholar
  19. 19.
    Lowry OH, Roserbrough NJ, Farr AL, Randall RJ (1951) Protein measurements and folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  20. 20.
    Mahanty NK, Sah P (1999) Excitatory synaptic inputs to pyramidal neurons of the lateral amygdala. Eur J Neurosci 11:1217–1222PubMedCrossRefGoogle Scholar
  21. 21.
    Mathern GW, Pretorius JK, Mendoza D, Lozada A, Leite JP, Chimelli L, Fried I, Sakamoto AC, Assirati JA (1998) Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. J Neuropathol Exp Neurol 57(6):615–634PubMedCrossRefGoogle Scholar
  22. 22.
    Maura G, Marcoli M, Pepicelli O, Rosu C, Viola C, Raiteri M (2000) Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT2C and 5-HT1A receptors. Br J Pharmacol 130:1853–1858PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Moldrich RX, Chapman AG, De Sarro G, Meldrum BS (2003) Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 476:3–16PubMedCrossRefGoogle Scholar
  24. 24.
    Olney J, Farber N (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007PubMedCrossRefGoogle Scholar
  25. 25.
    Otoya RE, Seltzer AM, Donoso AO (1997) Acute and long lasting effects of neonatal hypoxia on (+)-3-[135I] MK-801 binding to NMDA brain receptors. Exp Neurol 148:92–99PubMedCrossRefGoogle Scholar
  26. 26.
    Paulose CS, Finla C, Reas KS, Krishnakumar A (2008) Neuroprotective role of Bacopa monnieri extract in epilepsy and effect of glucose supplementation during hypoxia: glutamate receptor gene expression. Neurochem Res 33:1663–1671PubMedCrossRefGoogle Scholar
  27. 27.
    Pellow S, Chopin P, Files SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosc Meth 14:149–167CrossRefGoogle Scholar
  28. 28.
    Prakash JC, Sirsi M (1962) Comparative study of the effects of Brahmi (Bacopa monniera) and Chlopromazine on motor learning in rats. J Sci Ind Res 21:93–96Google Scholar
  29. 29.
    Racine RJ (1972) Modification of seizure activity by electrical stimulation. After discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279PubMedCrossRefGoogle Scholar
  30. 30.
    Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1991) Excitatory transmission in the basolateral amygdala. J Neurophysiol 66:986–998PubMedGoogle Scholar
  31. 31.
    Reas SK, Amee K, Paulose CS (2008) Glutamate receptor gene expression and binding studies in pilocarpine induced epileptic rat: neuroprotective role of Bacopa monnieri extract. Epilep Behav 12:54–60CrossRefGoogle Scholar
  32. 32.
    Rogan MT, Stäubli UV, LeDoux JE (1997) AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci 17:5928–5935PubMedGoogle Scholar
  33. 33.
    Rosenmund C, Feltz A, Westbrook GL (1995) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol 73:427–430PubMedGoogle Scholar
  34. 34.
    Sairam K, Dorababu M, Goel RK, Bhattacharya SK (2002) Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 9:207–211PubMedCrossRefGoogle Scholar
  35. 35.
    Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672CrossRefGoogle Scholar
  36. 36.
    Shanker G, Singh HK (2000) Anxiolytic profile of standardized Brahmi extract. Indian J Pharmacol 32:152Google Scholar
  37. 37.
    Shanmugasundaram ER, Akbar GK, Shanmugasundaram KR (1991) Brahmighritham. An ayurvedic herbal formula for the control of epilepsy. J Ethnopharmacol 33:269–276PubMedCrossRefGoogle Scholar
  38. 38.
    Silver IA, Erecińska M (1992) Relationship between ions and energy metabolism: cerebral calcium movements during ischemia and subsequent recovery. Can J Physiol Pharmacol 70:S190–S193PubMedCrossRefGoogle Scholar
  39. 39.
    Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246PubMedCrossRefGoogle Scholar
  40. 40.
    Singh HK, Dhawan BN (1997) Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn (Brahmi). Indian J Pharmacol 29:359–365Google Scholar
  41. 41.
    Smythies J (2005) Serotonin system. Int Rev Neurobiol 64:217–268PubMedCrossRefGoogle Scholar
  42. 42.
    Spencer S (2007) Epilepsy: clinical observations and novel mechanisms. Lancet Neurol 6:14–16PubMedCrossRefGoogle Scholar
  43. 43.
    Szyndler J, Wierzba-Bobrowicz T, Skórzewska A, Maciejak P, Walkowiak J, Lechowicz W, Turzyńska D, Bidziński A, Płaźnik A (2005) Behavioral, biochemical and histological studies in a model of pilocarpine-induced spontaneous recurrent seizures. Pharmacol Biochem Behav 81:15–23PubMedCrossRefGoogle Scholar
  44. 44.
    Valenti O, Conn PJ, Marino MJ (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors co-expressed in the same neuronal populations. J Cell Physiol 191:125–137PubMedCrossRefGoogle Scholar
  45. 45.
    Weinberger DR (1988) Schizophrenia and the frontal lobe. Trends Neurosci 11:367–370PubMedCrossRefGoogle Scholar
  46. 46.
    Wesołowska A, Nikiforuk A, Chojnacka-Wójcik E (2006) Anticonvulsant effect of the selective 5-HT1B receptor agonist CP 94253 in mice. Eur J Pharmacol 541:57–63PubMedCrossRefGoogle Scholar
  47. 47.
    Yu SP, Sensi SL, Canzoniero LM, Buisson A, Choi DW (1997) Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol 499:721–732PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amee Krishnakumar
    • 2
  • T. R. Anju
    • 1
    • 2
  • Pretty Mary Abraham
    • 1
    • 2
  • C. S. Paulose
    • 1
    Email author
  1. 1.Molecular Neurobiology and Cell Biology Unit, Department of Biotechnology, Centre for NeuroscienceCochin University of Science and TechnologyCochinIndia
  2. 2.Institute of ScienceNirma UniversityAhmedabadIndia

Personalised recommendations