Skip to main content

Advertisement

Log in

CoCl2-Induced Biochemical Hypoxia Down Regulates Activities and Expression of Super Oxide Dismutase and Catalase in Cerebral Cortex of Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hypoxia-induced oxidative stress is one of the major hallmark reasons underlying brain dysfunction. In the present manuscript, we have used CoCl2-induced hypoxic mice to investigate alterations in the activities of chief antioxidative stress enzymes- superoxide dismutase (SOD) and catalase (CAT) and expression of their genes Sod1 and Cat in the cerebral cortex as this model has not been routinely used for carrying out such study. Hypoxia mimetic mice model was accordingly developed by oral CoCl2 administration to mice and validated by analyzing alterations in the expression of the hypoxia inducible factor gene Hif- and its immediate responsive genes. Our Western blot data demonstrated that a dose of 40 mg/kg BW of CoCl2 was able to generate hypoxia like condition in mice in which Hif- and its immediate responsive genes-glutamate transporter-1 (Slc2a1) and erythropoietin (Epo) expression were up regulated. Our in-gel assay data indicated that SOD and CAT activities significantly declined and it was associated with significant down regulation of Sod1 and Epo expression as evident from our semi quantitative RT-PCR and Western blot data, which might be correlated with up regulation of Hif- expression in the cerebral cortex of the CoCl2-treated hypoxic mice. Our findings suggest that CoCl2-induced hypoxic mouse model is useful for studying alterations in the anti oxidative enzymes and biochemical/molecular/neurobiological analysis of hypoxia-induced alterations in brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437–448

    Article  CAS  PubMed  Google Scholar 

  2. Jiang B, Ren C, Li Y, Lu Y, Li W et al (2011) Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in Caenorhabditis elegans. J Biol Inorg Chem 16:267–274

    Article  CAS  PubMed  Google Scholar 

  3. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  4. Hu D, Serrano F, Oury TD, Klann E (2006) Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 26:3933–3941

    Article  CAS  PubMed  Google Scholar 

  5. Tuzcu M, Baydas G (2006) Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol 537:106–110

    Article  CAS  PubMed  Google Scholar 

  6. Olanow CW (1990) Oxidation reactions in Parkinson’s disease. Neurology 40:32–37

    PubMed  Google Scholar 

  7. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    Article  CAS  PubMed  Google Scholar 

  10. Ivan M, Kondo K, Yang H, Kim W, Valiando J et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  CAS  PubMed  Google Scholar 

  11. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  PubMed  Google Scholar 

  12. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861

    Article  CAS  PubMed  Google Scholar 

  13. Mole DR, Ratcliffe PJ (2008) Cellular oxygen sensing in health and disease. Pediatr Nephrol 23:681–694

    Article  PubMed  Google Scholar 

  14. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  CAS  PubMed  Google Scholar 

  15. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12

    PubMed  Google Scholar 

  16. Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Badr GA, Zhang JZ, Tang J, Kern TS, Ismail-Beigi F (1999) Glut1 and glut3 expression, but not capillary density, is increased by cobalt chloride in rat cerebrum and retina. Brain Res Mol Brain Res 64:24–33

    Article  CAS  PubMed  Google Scholar 

  18. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518

    CAS  PubMed  Google Scholar 

  19. Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg MA, Glass GA, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84:7972–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang G, Hazra TK, Mitra S, Lee HM, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells. Nucleic Acids Res 28:2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grasselli F, Basini G, Bussolati S, Bianco F (2005) Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev 17:715–720

    Article  CAS  PubMed  Google Scholar 

  23. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  24. Berra E, Ginouves A, Pouyssegur J (2006) The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep 7:41–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan Y, Hilliard G, Ferguson T, Millhorn DE (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel–Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 278:15911–15916

    Article  CAS  PubMed  Google Scholar 

  26. Calabrese V, Bates TE, Stella AM (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    Article  CAS  PubMed  Google Scholar 

  27. Marttila RJ, Roytta M, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in the human brain. J Neural Transm 74:87–95

    Article  CAS  PubMed  Google Scholar 

  28. Karovic O, Tonazzini I, Rebola N, Edstrom E, Lovdahl C et al (2007) Toxic effects of cobalt in primary cultures of mouse astrocytes. Similarities with hypoxia and role of HIF-1alpha. Biochem Pharmacol 73:694–708

    Article  CAS  PubMed  Google Scholar 

  29. Lakshmi SV, Padmaja G, Kuppusamy P, Kutala VK (2009) Oxidative stress in cardiovascular disease. Indian J Biochem Biophys 46:421–440

    CAS  PubMed  Google Scholar 

  30. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  31. Saxena S, Shukla D, Saxena S, Khan YA, Singh M (2010) Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf) 200:249–263

    Article  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Elwell JH, Oberley LW (1988) A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels. Free Radic Res Commun 5:67–75

    Article  CAS  PubMed  Google Scholar 

  35. Hayashi T, Abe K, Suzuki H, Itoyama Y (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039–2044

    Article  CAS  PubMed  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  37. Singh K, Gaur P, Prasad S (2007) Fragile x mental retardation (Fmr-1) gene expression is down regulated in brain of mice during aging. Mol Biol Rep 34(3):173–181

    Article  CAS  PubMed  Google Scholar 

  38. Magalhães J, Ascensão A, Marques F, Soares J, Neuparth M et al (2005) Skeletal muscle ultrastructural and plasma biochemical signs of endothelium dysfunction induced by a high-altitude expedition (Pumori, 7161 m). Basic Appl Myol 15:29–35

    Google Scholar 

  39. Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G et al (2005) Neuroprotective effect of N-acetyl cysteine on hypoxia-induced oxidative stress in primary hippocampal culture. Brain Res 1046:97–104

    Article  CAS  PubMed  Google Scholar 

  40. Ramanathan L, Gozal D, Siegel JM (2005) Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem 93:47–52

    Article  CAS  PubMed  Google Scholar 

  41. Maiti P, Singh SB, Sharma AK, Muthuraju S, Banerjee PK et al (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 49:709–716

    Article  CAS  PubMed  Google Scholar 

  42. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  43. Goldberg MA, Schneider TJ (1994) Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 269:4355–4359

    CAS  PubMed  Google Scholar 

  44. Marti HH (2004) Erythropoietin and the hypoxic brain. J Exp Biol 207:3233–3242

    Article  CAS  PubMed  Google Scholar 

  45. Nakanishi K, Tajima F, Nakamura A, Yagura S, Ookawara T et al (1995) Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol 489(Pt 3):869–876

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maiti P, Singh SB, Muthuraju S, Veleri S, Ilavazhagan G (2007) Hypobaric hypoxia damages the hippocampal pyramidal neurons in the rat brain. Brain Res 1175:1–9

    Article  CAS  PubMed  Google Scholar 

  47. Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 59:33–78

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi M, Kohara A, Shishikura J, Kawasaki-Yatsugi S, Ni JW et al (2002) YM872: a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. CNS Drug Rev 8:337–352

    Article  CAS  PubMed  Google Scholar 

  49. Park EC, Ghose P, Shao Z, Ye Q, Kang L et al (2012) Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. EMBO J 31:1379–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C (2013) Hypoxia-induced retinal ganglion cell damage through activation of AMPA receptors and the neuroprotective effects of DNQX. Exp Eye Res 109:83–97

    Article  CAS  PubMed  Google Scholar 

  51. Opitz T, Reymann KG (1994) Metabotropic glutamate receptors are involved in hypoxic/hypoglycemic injury of hippocampal CA1 neurons in vitro. Neuropsychopharmacology 11:278

    Article  Google Scholar 

  52. Bodhinathan K, Kumar A, Foster TC (2010) Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 30:1914–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar A, Foster TC (2013) Linking redox regulation of NMDAR synaptic function to cognitive decline during aging. J Neurosci 33:15710–15715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AR is thankful to Council of Scientific and Industrial research, Govt. of India for Junior Research Fellowship. Financial assistance from University Grants Commission (41-168/2012 (SR), CSIR (37/1389/09/EMR-II), BRNS (2009/37/55/3298), ICMR (54/11/CPF/11-NCD-II), Govt. of India, CAS Program, Zoology Dept., Banaras Hindu University to SP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Prasad, S. CoCl2-Induced Biochemical Hypoxia Down Regulates Activities and Expression of Super Oxide Dismutase and Catalase in Cerebral Cortex of Mice. Neurochem Res 39, 1787–1796 (2014). https://doi.org/10.1007/s11064-014-1388-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1388-x

Keywords

Navigation