Skip to main content

Advertisement

Log in

Neuroimmunomodulation in Depression: A Review of Inflammatory Cytokines Involved in this Process

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is a debilitating mental disease that affects a large number of people globally; however the pathophysiological mechanisms of this disease remain incompletely understood. Some studies have shown that depression is associated with inflammatory activity, and the mode of action of several antidepressants appears to involve immunomodulation. In this case, the induction of a pro-inflammatory state in healthy or depressive subjects induces a ‘sickness behaviour’ resembling depressive symptomatology. Potential mechanisms of pro-inflammatory cytokines are effects on monoamine levels, disruption of the hypothalamic–pituitary–adrenal axis, activation of the pathological microglial cells, such as the macrophages and alterations in neuroplasticity and brain functions. Thus, this review will highlight the role of inflammation in depression, the possible mechanisms involved, and also explore effective treatments that act on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Duman RS (1998) Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry 44:324–335

    Article  CAS  PubMed  Google Scholar 

  2. Patel A (2013) Review: the role of inflammation in depression. Psychiatr Danub 25:216–223

    CAS  Google Scholar 

  3. Nemeroff CB, Owens MJ (2002) Treatment of mood disorders. Nat Neurosci 5:1068–1070

    Article  CAS  PubMed  Google Scholar 

  4. Herbert TB, Cohen S, Marsland AL et al (1994) Cardiovascular reactivity and the course of immune response to an acute psychological stressor. Psychosom Med 56:337–344

    Article  CAS  PubMed  Google Scholar 

  5. Maes M (2001) The immunoregulatory effect of antidepressants. Hum Psychopharmacol Clin Exp 16:95–103

    Article  CAS  Google Scholar 

  6. Maes M (1999) Major depression and activation of the inflammatory response system. Adv Exp Med Biol 461:25–46

    Article  CAS  PubMed  Google Scholar 

  7. Kushner I (1982) The phenomena of the acute phase response. Ann N Y Sci 389:39–48

    Article  CAS  Google Scholar 

  8. Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306

    Article  CAS  PubMed  Google Scholar 

  9. Sirisinha S (2011) Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pac J Allergy Immunol 1:1–14

    Article  Google Scholar 

  10. Suvisaari J, Mantere O (2013) Inflammation theories in psychotic disorders: a critical review. Infect Disord Drug Targets 13:59–70

    Article  CAS  PubMed  Google Scholar 

  11. Suvisaari J, Loo BM, Saarni SE, Haukka J, Perälä J, Saarni SI, Viertiö S, Partti K, Lönnqvist J, Jula A (2011) Inflammation in psychotic disorders: a population-based study. Psychiatry Res 189:305–311

    Article  PubMed  Google Scholar 

  12. Cruvinel WM, Mesquita DJ, Araújo JAP, Catelan TTT, Souza AW, Silva NP, Andrade LEC (2010) Sistema imunitário—parte i fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol 50:434–461

    Google Scholar 

  13. Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ (2005) Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 6:1045–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Abbas AK, Lichtman AH, Pillai S (2012) Cellular and molecular immunology, 7th edn. Elsevier Saunders, Philadelphia, p 864

    Google Scholar 

  15. Janeway CA, Travers P (1997) Immunobiology. The immune system in health and disease, 3rd edn. Current Biol/Garland Publishing, New York

    Google Scholar 

  16. Kronfol Z, Remick DG (2000) Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 157:683–694

    Article  CAS  PubMed  Google Scholar 

  17. Rezaie P, Trillo-Pazos G, Everall IP, Male DK (2002) Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS. Glia 37:64–75

    Article  CAS  PubMed  Google Scholar 

  18. Lee YB, Nagai A, Kim SU (2002) Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69:94–103

    Article  CAS  PubMed  Google Scholar 

  19. Khairova RA, Machado-Vieira R, Du J, Manji HK (2009) A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol 12:561–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR (2006) Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 30:899–905

    Article  CAS  PubMed  Google Scholar 

  21. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19:11–38

    Article  CAS  PubMed  Google Scholar 

  22. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    Article  CAS  PubMed  Google Scholar 

  24. Kling MA, Alesci S, Csako G, Costello R, Luckenbaugh DA, Bonne O et al (2007) Sustained low-grade pro-inflammatory state in unmedicated, remitted women with major depressive disorder as evidenced by elevated serum levels of the acute phase proteins C-reactive protein and serum amyloid A. Biol Psychiatry 62:309–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ford DE, Erlinger TP (2004) Depression and C-reactive protein in US adults: data from the third national health and nutrition examination survey. Arch Intern Med 164:1010–1014

    Article  PubMed  Google Scholar 

  26. Danner M, Kasl SV, Abramson JL, Vaccarino V (2003) Association between depression and elevated C-reactive protein. Psychosom Med 65:347–356

    Article  CAS  PubMed  Google Scholar 

  27. Kop WJ, Gottdiener JS, Tangen CM, Fried LP, McBurnie MA, Walston J et al (2002) Inflammation and coagulation factors in persons N 65 years of age with symptoms of depression but without evidence of myocardial ischemia. Am J Cardiol 89:419–424

    Article  CAS  PubMed  Google Scholar 

  28. Himmerich H, Fulda S, Linseisen J, Seiler H, Wolfram G, Himmerich S et al (2008) Depression, comorbidities and the TNF-alpha system. Eur Psychiatry 23:421–429

    Article  CAS  PubMed  Google Scholar 

  29. Simen BB, Duman CH, Simen AA, Duman RS (2006) TNF[alpha] signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry 59:775–785

    Article  CAS  PubMed  Google Scholar 

  30. Malynn S, Campos-Torres A, Moynagh P, Haase J (2013) The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem Res 38:694–704

    Article  CAS  PubMed  Google Scholar 

  31. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A et al (2001) Cytokineassociated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    Article  CAS  PubMed  Google Scholar 

  32. Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiol 40:171–176

    Article  CAS  Google Scholar 

  33. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacol 22:370–379

    Article  CAS  Google Scholar 

  34. Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M (2001) Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 11:203–208

    Article  CAS  PubMed  Google Scholar 

  35. Penninx BW, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S et al (2003) Inflammatory markers and depressed mood in older persons: results from the health, aging and body composition study. Biol Psychiatry 54:566–572

    Article  CAS  PubMed  Google Scholar 

  36. Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E (2003) Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacol 170:429–433

    Article  CAS  Google Scholar 

  37. Marques-Deak AH, Neto FL, Dominguez WV, Solis AC, Kurcgant D, Sato F et al (2007) Cytokine profiles in women with different subtypes of major depressive disorder. J Psychiatr Res 41:152–159

    Article  CAS  PubMed  Google Scholar 

  38. Palin K, McCusker RH, Strle K, Moos F, Dantzer R, Kelley KW (2008) Tumor necrosis factor-a-induced sickness behavior is impaired by central administration of an inhibitor of c-jun N-terminal kinase. Psychopharmacol 197:629–635

    Article  CAS  Google Scholar 

  39. Fu X, Zunich SM, O’Connor JC, Kavelaars A, Dantzer R, Kelley KW (2010) Central administration of lipopolysaccharide induces depressive-like behavior in vivo and activates brain indoleamine 2,3-dioxygenase in murine organotypic hippocampal slice cultures. J Neuroinflammation 7:43

    Article  PubMed Central  PubMed  Google Scholar 

  40. Kent S, Bluthé RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    Article  CAS  PubMed  Google Scholar 

  41. Kent S, Bluthé RM, Dantzer R, Hardwick AJ, Kelley KW, Rothwell NJ, Vannice JL (1992) Different receptor mechanisms mediate the pyrogenic and behavioral effects of interleukin 1. Proc Natl Acad Sci USA 89:9117–9120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kent S, Kelley KW, Dantzer R (1992) Effects of lipopolysaccharide on foodmotivated behavior in the rat are not blocked by an interleukin-1 receptor antagonist. Neurosci Lett 145:83–86

    Article  CAS  PubMed  Google Scholar 

  43. Bluthé RM, Michaud B, Poli V, Dantzer R (2000) Role of IL-6 in cytokine-induced sickness behavior: a study with IL-6 deficient mice. Physiol Behav 70:367–373

    Article  PubMed  Google Scholar 

  44. Ignatowski TA, Chou RC, Spengler RN (1996) Changes in noradrenergic sensitivity to tumor necrosis factor-alpha in brains of rats administered clonidine. J Neuroimmunol 70:55–63

    Article  CAS  PubMed  Google Scholar 

  45. Nickola TJ, Ignatowski TA, Reynolds JL, Spengler RN (2001) Antidepressant drug-induced alterations in neuron-localized tumor necrosis factor-alpha mRNA and alpha(2)-adrenergic receptor sensitivity. J Pharmacol Exp Ther 297:680–687

    CAS  PubMed  Google Scholar 

  46. Bayramg€urler D, Karson A, Ozer C, Utkan T (2013) Effects of longterm etanercept treatment on anxiety- and depression-like neurobehaviors in rats. Physiol Behav 119C:145–148

    Article  Google Scholar 

  47. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70:31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kraneveld AD, de Theije CG, van Heesch F, Borre Y, de Kivit S, Olivier B, Korte M, Garssen J (2014) The neuro-immune axis: prospect for novel treatments for mental disorders. Basic Clin Pharmacol Toxicol 114:128–136

    Article  CAS  PubMed  Google Scholar 

  49. Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM (2012) Interleukin-1β causes fluoxetine resistance in an animal model of epilepsy-associated depression. Neurotherapeutics 9:477–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134:291–298

    Article  CAS  PubMed  Google Scholar 

  51. Bellinger FP, Madamba S, Siggins GR (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res 628:227–234

    Article  CAS  PubMed  Google Scholar 

  52. Curran B, O’Connor JJ (2001) The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Neuroscience 108:83–90

    Article  CAS  PubMed  Google Scholar 

  53. Gibertini M, Newton C, Friedman H, Klein TW (1995) Spatial learning impairment in mice infected with Legionella pneumophila or administered exogenous interleukin-1-beta. Brain Behav Immun 9:113–128

    Article  CAS  PubMed  Google Scholar 

  54. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13:717–728

    Article  CAS  PubMed  Google Scholar 

  55. Oitzl MS, van Oers H, Schobitz B, de Kloet ER (1993) Interleukin-1 beta, but not interleukin-6, impairs spatial navigation learning. Brain Res 613:160–163

    Article  CAS  PubMed  Google Scholar 

  56. Pugh CR, Nguyen KT, Gonyea JL, Fleshner M, Wakins LR, Maier SF, Rudy JW (1999) Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res 106:109–118

    Article  CAS  PubMed  Google Scholar 

  57. Parsadaniantz SM, Batsche E, Gegout-Pottie P et al (1997) Effects of continuous infusion of interleukin 1 beta on corticotropin-releasing hormone (CRH), CRH receptors, proopiomelanocortin gene expression and secretion of corticotropin, beta-endorphin and corticosterone. Neuroendocrinology 65:53–63

    Article  CAS  PubMed  Google Scholar 

  58. Konsman JP, Veeneman J, Combe C, Poole S, Luheshi GN, Dantzer R (2008) Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur J Neurosci 28:2499–2510

    Article  CAS  PubMed  Google Scholar 

  59. Dantzer R (2009) Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am 29:247–264

    Article  PubMed Central  PubMed  Google Scholar 

  60. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30:30–45

    Article  CAS  PubMed  Google Scholar 

  61. Borkowska P, Kucia K, Rzezniczek S et al (2011) Interleukin-1beta promoter (-31T/C and -511C/T) polymorphisms in major recurrent depression. J Mol Neurosci 44:12–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Baune BT, Dannlowski U, Domschke K et al (2010) The interleukin 1 beta (IL-1β) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry 67:543–549

    Article  CAS  PubMed  Google Scholar 

  63. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T (2011) IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 25:1281–1289

    Article  CAS  PubMed  Google Scholar 

  64. Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84

    Article  CAS  PubMed  Google Scholar 

  65. Yu S, Holsboer F, Almeida OF (2008) Neuronal actions of glucocorticoids: focus on depression. J Steroid Biochem Mol Biol 108:300–309

    Article  CAS  PubMed  Google Scholar 

  66. Watson S, Gallagher P, Smith MS, Ferrier IN, Young AH (2006) The DEX/CRH test-is it better than the DST? Psychoneuroendocrinology 31:889–894

    Article  CAS  PubMed  Google Scholar 

  67. Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234

    Article  CAS  PubMed  Google Scholar 

  68. Larson SJ, Dunn AJ (2001) Behavioral effects of cytokines. Brain Behav Immun 15:371–387

    Article  CAS  PubMed  Google Scholar 

  69. Maier SF, Watkins LR (1998) Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 105:83–107

    Article  CAS  PubMed  Google Scholar 

  70. Yirmiya R (2000) Depression in medical illness: the role of the immune system. West J Med 173:333–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M (2013) Increased IL-6 trans-signaling in depression: focus on the tryptophan catabolite pathway, melatonin andneuroprogression. Pharmacol Rep 65:1647–1654

    Article  CAS  PubMed  Google Scholar 

  72. Dandrea M, Donadelli M, Costanzo C, Scarpa A, Palmieri M (2009) MeCP2/H3meK9 are involved in IL-6 gene silencing in pancreatic adenocarcinoma cell lines. Nucleic Acids Res 37:6681–6690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853–858

    Article  CAS  PubMed  Google Scholar 

  74. Basterzi AD, Aydemir C, Kisa C, Aksaray S, Tuzer V, Yazici K et al (2005) IL-6 levels decrease SSRI treatment in patients with major depression. Hum Psychopharmacol 20:473–476

    Article  CAS  PubMed  Google Scholar 

  75. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41:326–331

    Article  PubMed  Google Scholar 

  76. Himmerich H, Milenovic S, Fulda S, Plumakers B, Sheldrick AJ, Michel TM et al (2010) Regulatory T cells increased while IL-1beta decreased during antidepressant therapy. J Psychiatr Res 44:1052–1057

    Article  PubMed  Google Scholar 

  77. Ohgi Y, Futamura T, Kikuchi T, Hashimoto K (2013) Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 103:853–859

    Article  CAS  PubMed  Google Scholar 

  78. Réus GZ, Dos Santos MA, Abelaira HM, Ribeiro KF, Petronilho F, Vuolo F, Colpo GD, Pfaffenseller B, Kapczinski F, Dal-Pizzol F, Quevedo J (2013) Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats. Behav Brain Res 242:40–46

    Article  PubMed  Google Scholar 

  79. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN, Bowden CL, Soares JC (2008) Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 23:87–94

    Article  CAS  PubMed  Google Scholar 

  80. Levine J, Cholestoy A, Zimmerman J (1996) Possible antidepressant effect of minocycline. Am J Psychiatry 153:582

    CAS  PubMed  Google Scholar 

  81. Molina-Hernandez M, Tellez-Alcantara NP, Perez-garcia J et al (2008) Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 32:380–386

    Article  CAS  PubMed  Google Scholar 

  82. Lichtenstein GR, Bola M, Man C, DeWoody K, Schaible T (2002) Infliximab improves the quality of life in patients with Crohn’s disease. Inflamm Bowel Dis 8:237–243

    Article  PubMed  Google Scholar 

  83. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L et al (2009) Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry 66:287–292

    Article  CAS  PubMed  Google Scholar 

  84. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Ueda N, Nakamura J (2009) Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Prog Neuropsychopharmacol Biol Psychiatry 33:722–726

    Article  CAS  PubMed  Google Scholar 

  85. Leo R, Di Lorenzo G, Tesauro M, Razzini C, Forleo GB, Chiricolo G et al (2006) Association between enhanced soluble CD40 ligand and proinflammatory and prothrombotic states in major depressive disorder: pilot observations on the effects of selective serotonin reuptake inhibitor therapy. J Clin Psychiatry 67:1760–1766

    Article  CAS  PubMed  Google Scholar 

  86. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785

    Article  CAS  PubMed  Google Scholar 

  87. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:744–759

    Article  CAS  PubMed  Google Scholar 

  88. Shenoy AR, Dehmel T, Stettner M, Kremer D, Kieseier BC, Hartung HP, Hofstetter HH (2013) Citalopram suppresses thymocyte cytokine production. J Neuroimmunol 262:46–52

    Article  CAS  PubMed  Google Scholar 

  89. Vollmar P, Nessler S, Kalluri SR, Hartung HP, Hemmer B (2009) The antidepressant venlafaxine ameliorates murine experimental autoimmune encephalomyelitis by suppression of pro-inflammatory cytokines. Int J Neuropsychopharmacol 12:525–536

    Article  CAS  PubMed  Google Scholar 

  90. Sacre S, Medghalchi M, Gregory B, Brennan F, Williams R (2010) Fluoxetine and citalopram exhibit potent antiinflammatory activity in human and murine models of rheumatoid arthritis and inhibit toll-like receptors. Arthritis Rheum 62:683–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Laboratory of Neurosciences (Brazil) is a center within the National Institute for Translational Medicine (INCT-TM) and is also a member of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from CNPq (JQ and GZR), FAPESC (JQ), Instituto Cérebro e Mente, UNESC (JQ and TB), and and L´Oréal/UNESCO/ABC Brazil Fellowship for Women in Science 2011 (GZR). JQ and TB are CNPq Research Fellows. HMA has CAPES studentships. We thank Allan M. Colladel for making the Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislaine Z. Réus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abelaira, H.M., Réus, G.Z., Petronilho, F. et al. Neuroimmunomodulation in Depression: A Review of Inflammatory Cytokines Involved in this Process. Neurochem Res 39, 1634–1639 (2014). https://doi.org/10.1007/s11064-014-1372-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1372-5

Keywords

Navigation