Skip to main content
Log in

Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brede M, Wiesmann F, Jahns R, Hadamek K, Arnolt C, Neubauer S, Lohse MJ, Hein L (2002) Feedback inhibition of catecholamine release by two different alpha 2-adrenoceptor subtypes prevents progression of heart failure. Circulation 106:2491–2496

    Article  CAS  PubMed  Google Scholar 

  2. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    Article  CAS  PubMed  Google Scholar 

  3. Sinoway L, Prophet S, Gorman I, Mosher T, Shenberger J, Dolecki M, Briggs R, Zelis R (1989) Muscle acidosis during static exercise is associated with calf vasoconstriction. J Appl Physiol 66:429–436

    CAS  PubMed  Google Scholar 

  4. Victor RG, Bertocci L, Pryor S, Nunnally R (1988) Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J Clin Invest 82:1301–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Goodwin GM, McCloskey DI, Mitchell JH (1972) Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol (Lond) 226:173–190

    CAS  Google Scholar 

  6. Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH (1996) Central neural control of respiration and circulation during exercise Chapter 9. In: Rowell LB, Shepherd JT (eds) Handbook of physiology—section 12, exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 333–380

    Google Scholar 

  7. Kaufman MP, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise Chapter 10. In: Rowell LB, Shepherd JT (eds) Handbook of physiology—section 12, exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 381–447

    Google Scholar 

  8. McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond) 224:173–186

    CAS  Google Scholar 

  9. Mitchell JH, Kaufman MP, Iwamoto GA (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanism, and central pathways. Ann Rev Physiol 45:229–242

    Article  CAS  Google Scholar 

  10. Negrão CE, Rondon MU, Tinucci T, Alves MJ, Roveda F, Braga AM, Reis SF, Nastari L, Barretto AC, Krieger EM, Middlekauff HR (2001) Abnormal neurovascular control during exercise is linked to heart failure severity. Am J Physiol Heart Circ Physiol 280:H1286–H1292

    PubMed  Google Scholar 

  11. Silber DH, Sutliff G, Yang QX, Smith MB, Sinoway LI, Leuenberger UA (1998) Altered mechanisms of sympathetic activation during rhythmic forearm exercise in heart failure. J Appl Physiol 84:1551–1559

    Article  CAS  PubMed  Google Scholar 

  12. Hammond RL, Augustyniak RA, Rossi NF, Lapanowski K, Dunbar JC, O’Leary DS (2001) Alteration of humoral and peripheral vascular responses during graded exercise in heart failure. J Appl Physiol 90:55–61

    CAS  PubMed  Google Scholar 

  13. Middlekauff HR, Nitzsche EU, Hoh CK, Hamilton MA, Fonarow GC, Hage A, Moriguchi JD (2000) Exaggerated renal vasoconstriction during exercise in heart failure patients. Circulation 101:784–789

    Article  CAS  PubMed  Google Scholar 

  14. Momen A, Bower D, Boehmer J, Kunselman AR, Leuenberger UA, Sinoway LI (2004) Renal blood flow in heart failure patients during exercise. Am J Physiol Heart Circ Physiol 287:H2834–H2839

    Article  CAS  PubMed  Google Scholar 

  15. LeJemtel TH, Maskin CS, Lucido D, Chadwick BJ (1986) Failure to augment maximal limb blood flow in response to one-leg versus two-leg exercise in patients with severe heart failure. Circ Res 74:245–251

    Article  CAS  Google Scholar 

  16. Shoemaker JK, Naylor HL, Hogeman CS, Sinoway LI (1999) Blood flow dynamics in heart failure. Circulation 99:3002–3008

    Article  CAS  PubMed  Google Scholar 

  17. Dargie H (1990) Sympathetic activity and regional blood flow in heart failure. Eur Heart J 11(Suppl A):39–43

    Article  PubMed  Google Scholar 

  18. Wilson JR, Mancini DM (1993) Factors contributing to the exercise limitation of heart failure. J Am Coll Cardiol 22:93A–98A

    Article  CAS  PubMed  Google Scholar 

  19. Ponikowski PP, Chua TP, Francis DP, Capucci A, Coats AJ, Piepoli MF (2001) Muscle ergo receptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation 104:2230–2324

    Google Scholar 

  20. Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJS (1996) Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure. Effects of physical training. Circulation 93:940–952

    Article  CAS  PubMed  Google Scholar 

  21. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  23. Nicol GD, Vasko MR (2007) Unraveling the story of NGF-mediated sensitization of nociceptive sensory neurons: ON or OFF the Trks? Mol Interv 7:26–41

    Article  CAS  PubMed  Google Scholar 

  24. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Sinoway AN, Gao Z, Maile MD, Pu M, Sinoway LI (2004) Muscle mechanoreflex and metaboreflex responses after myocardial infarction in rats. Circulation 110:3049–3054

    Article  PubMed  Google Scholar 

  26. Smith SA, Williams MA, Mitchell JH, Mammen PA, Garry MG (2005) The capsaicin-sensitive afferent neuron in skeletal muscle is abnormal in heart failure. Circulation 111:2056–2065

    Article  CAS  PubMed  Google Scholar 

  27. Esler M, Kaye D (2006) Sympathetic nervous system neuroplasticity. Hypertension 47:143–144

    Article  CAS  PubMed  Google Scholar 

  28. Govonia S, Pascalea A, Amadioa M, Calvillo L, D’Elia E, Ceredad C, Fantuccie P, Ceronif M, Vanoli E (2011) NGF and heart: Is there a role in heart disease? Pharmacol Res 63:266–277

    Article  Google Scholar 

  29. Gao Z, Xing J, Sinoway LI, Li J (2007) P2X receptor-mediated muscle pressor reflex in myocardial infarction. Am J Physiol Heart Circ Physiol 292:H939–H945

    Article  CAS  PubMed  Google Scholar 

  30. Xing J, Koba S, Kehoe V, Gao Z, Rice K, King N, Sinoway L, Li J (2007) Interstitial norepinephrine concentrations in skeletal muscle of ischemic heart failure. Am J Physiol 293:H1190–H1195

    CAS  Google Scholar 

  31. Zettler C, Bridges DC, Zhou XF, Rush RA (1996) Detection of increased tissue concentrations of nerve growth factor with an improved extraction procedure. J Neurosci Res 46:581–594

    Article  PubMed  Google Scholar 

  32. Kiriazis H, Du XJ, Feng X, Hotchkin E, Marshall T, Finch S, Gao XM, Lambert G, Choate JK, Kaye DM (2005) Preserved left ventricular structure and function in mice with cardiac sympathetic hyperinnervation. Am J Physiol Heart Circ Physiol 289:H1359–H1365

    Article  CAS  PubMed  Google Scholar 

  33. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011

    Article  CAS  PubMed  Google Scholar 

  34. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS (2000) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    Article  CAS  PubMed  Google Scholar 

  35. Kreusser MM, Haass M, Buss SJ, Hardt SE, Gerber SH, Kinscherf R, Katus HA, Backs J (2006) Injection of nerve growth factor into stellate ganglia improves norepinephrine reuptake into failing hearts. Hypertension 47:209–215

    Article  CAS  PubMed  Google Scholar 

  36. Qin F, Vulapalli RS, Stevens SY, Liang CS (2002) Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. Am J Physiol Heart Circ Physiol 282:H363–H371

    CAS  PubMed  Google Scholar 

  37. D’Elia E, Pascale A, Marchesi N, Ferrero P, Senni M, Govoni S, Gronda E, Vanoli E (2013) Novel approaches to the post-myocardial infarction/heart failure neural remodeling. Heart Fail Rev. doi:10.1007/s10741-013-9415-6

  38. Kimura K, Kanazawa H, Ieda M, Kawaguchi-Manabe H, Miyake Y, Yagi T, Arai T, Sano M, Fukuda K (2010) Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci Basic Clin 156:27–35

    Article  CAS  Google Scholar 

  39. Rana OR, Saygili E, Meyer C, Gemein C, Krüttgen A, Andrzejewski MG, Ludwig A, Schotten U, Schwinger RHG, Weber C, Weis J, Mischke K, Rassaf T, Kelm M, Schauerte P (2009) Regulation of nerve growth factor in the heart: the role of the calcineurin–NFAT pathway. J Mol Cell Cardiol 46:568–578

    Article  CAS  PubMed  Google Scholar 

  40. Kaufman MP, Iwamoto GA, Longhurst JC, Mitchell JH (1982) Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circ Res 50:133–139

    Article  CAS  PubMed  Google Scholar 

  41. Kaufman MP, Waldrop TG, Rybicki KJ, Ordway GA, Mitchell JH (1984) Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents. Cardiovasc Res 18:663–668

    Article  CAS  PubMed  Google Scholar 

  42. Crayton SC, Mitchell JH, Payne FC III (1981) Reflex cardiovascular response during injection of capsaicin into skeletal muscle. Am J Physiol Heart Circ Physiol 240:H315–H319

    CAS  Google Scholar 

  43. Li J, Maile MD, Sinoway AN, Sinoway LI (2004) Muscle pressor reflex: potential role of vanilloid type 1 receptor and acid-sensing ion channel. J Appl Physiol 97:1709–1714

    Article  CAS  PubMed  Google Scholar 

  44. McClain J, Hardy C, Enders B, Smith M, Sinoway L (1993) Limb congestion and sympathoexcitation during exercise. Implications for congestive heart failure. J Clin Investig 92:2353–2359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Anand U, Otto WR, Casula MA, Day NC, Davis JB, Bountra C, Birch R, Anand P (2006) The effect of neurotrophic factors on morphology, TRPV1 expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci Lett 399:51–56

    Article  CAS  PubMed  Google Scholar 

  46. Xing J, Lu J, Li J (2009) Contribution of nerve growth factor to augmented TRPV1 responses of muscle sensory neurons by femoral artery occlusion. Am J Physiol Heart Circ Physiol 296:H1380–H1387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Amaya F, Shimosato G, Nagano M, Ueda M, Hashimoto S, Tanaka Y, Suzuki H, Tanaka M (2004) NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur J Neurosci 20:2303–2310

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Grants from NIH R01 HL078866 and American Heart Association Established Investigator Award 0840130N.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihong Xing or Jianhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Lu, J. & Li, J. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure. Neurochem Res 39, 1564–1570 (2014). https://doi.org/10.1007/s11064-014-1348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1348-5

Keywords

Navigation