Skip to main content

Advertisement

Log in

Gastrodin Ameliorates Memory Deficits in 3,3′-Iminodipropionitrile-Induced Rats: Possible Involvement of Dopaminergic System

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

3,3′-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce neurotoxicity, and therefore cause motor dysfunction and cognitive deficits. Gastrodin is a main bioactive constituent of a Chinese herbal medicine (Gastrodia elata Blume) widely used for treating various neurological disorders and showed greatly improved mental function. This study was designed to determine whether administration of gastrodin attenuates IDPN-induced working memory deficits in Y-maze task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (150 mg/kg/day, v.o.) significantly impaired working memory and that long-term gastrodin (200 mg/kg/day, v.o.) could effectively rescue these IDPN-induced memory impairments as indicated by increased spontaneous alternation in the Y-maze test. Additionally, gastrodin treatment prevented IDPN-induced reductions of dopamine (DA) and its metabolites, as well as elevation of dopamine turnover ratio (DOPAC + HVA)/DA. Gastrodin treatment also prevented alterations in dopamine D2 receptor and dopamine transporter protein levels in the rat hippocampus. Our results suggest that long-term gastrodin treatment may have potential therapeutic values for IDPN-induced cognitive impairments, which was mediated, in part, by normalizing the dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IDPN:

3,3′-Iminodipropionitrile

GAS:

Gastrodin

GE:

Gastrodia elata Blume

DA:

Dopamine

DAT:

Dopamine transporter

DOPAC:

3,4-Dihydroxyphenylacetic acid

HVA:

Homovanilic acid

HPLC:

High-performance liquid chromatography

References

  1. Tariq M, Khan H, Al Moutaery K et al (2002) Attenuation of iminodipropionitrile induced behavioral syndrome by sodium salicylate in rats. Pharmacol Biochem Behav 73:647–654

    Article  CAS  PubMed  Google Scholar 

  2. Al Kadasah S, Al Mutairy A, Siddiquei M et al (2009) Pentoxifylline attenuates iminodipropionitrile-induced behavioral abnormalities in rats. Behav Pharmacol 20:356–360

    Article  CAS  PubMed  Google Scholar 

  3. Llorens J, Crofton K, O’Callaghan J (1993) Administration of 3,3′-iminodipropionitrile to the rat results in region-dependent damage to the central nervous system at levels above the brain stem. J Pharmacol Exp Ther 265:1492–1498

    CAS  PubMed  Google Scholar 

  4. Genter M, Llorens J, O’Callaghan J et al (1992) Olfactory toxicity of beta, beta’-iminodipropionitrile in the rat. J Pharmacol Exp Ther 263:1432–1439

    CAS  PubMed  Google Scholar 

  5. Seoane A, Espejo M, Pallàs M et al (1999) Degeneration and gliosis in rat retina and central nervous system following 3,3′-iminodipropionitrile exposure. Brain Res 833:258–271

    Article  CAS  PubMed  Google Scholar 

  6. Peele D, Allison S, Crofton K (1990) Learning and memory deficits in rats following exposure to 3,3′-iminodipropionitrile. Toxicol Appl Pharmacol 105:321–332

    Article  CAS  PubMed  Google Scholar 

  7. Crofton K, Peele D, Stanton M (1993) Developmental neurotoxicity following neonatal exposure to 3,3′-iminodipropionitrile in the rat. Neurotoxicol Teratol 15:117–129

    Article  CAS  PubMed  Google Scholar 

  8. Ogawa N, Mizukawa K, Haba K et al (1990) Neurotransmitter and receptor alterations in the rat persistent dyskinesia model induced by iminodipropionitrile. Eur Neurol 30:31–40

    Article  PubMed  Google Scholar 

  9. Sun W, Miao B, Wang X et al (2012) Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PLoS ONE 7:e39647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang Q, Chen G, Zeng S (2008) Distribution and metabolism of gastrodin in rat brain. J Pharm Biomed Anal 46:399–404

    Article  CAS  PubMed  Google Scholar 

  11. An S, Park S, Hwang I et al (2003) Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J Neurosci Res 71:534–543

    Article  CAS  PubMed  Google Scholar 

  12. Dai J, Zong Y, Zhong L et al (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS ONE 6:21891

    Article  Google Scholar 

  13. Manavalan A, Ramachandran U, Sundaramurthi H et al (2012) Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. Int J Biochem Mol Biol 3:219–241

    PubMed Central  PubMed  Google Scholar 

  14. Zhao X, Zou Y, Xu H et al (2012) Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway. Brain Res 1482:13–21

    Article  CAS  PubMed  Google Scholar 

  15. Kumar H, Kim I, More S et al (2013) Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid Based Complement Alternat Med 2013:514095

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hsieh M, Wu C, Chen CF (1997) Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats. J Ethnopharmacol 56:45–54

    Article  CAS  PubMed  Google Scholar 

  17. Shuchang H, Qiao N, Piye N et al (2008) Protective effects of Gastrodia elata on aluminium-chloride-induced learning impairments and alterations of amino acid neurotransmitter release in adult rats. Restor Neurol Neurosci 26:467–473

    PubMed Central  PubMed  Google Scholar 

  18. Chen P, Liang K, Lin H et al (2011) Gastrodia elata Bl. Attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze. J Med Food 14:610–617

    Article  PubMed  Google Scholar 

  19. Yong W, Xing T, Wang S et al (2009) Protective effects of gastrodin on lead-induced synaptic plasticity deficits in rat hippocampus. Planta Med 75:1112–1117

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka S (2002) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Netw 15:573–582

    Article  PubMed  Google Scholar 

  21. Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:113–125

    Article  Google Scholar 

  22. Karakuyu D, Herold C, Güntürkün O et al (2007) Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory. Eur J Neurosci 26:2293–2302

    Article  PubMed  Google Scholar 

  23. Scatton B, Simon H, Le Moal M et al (1980) Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18:125–131

    CAS  PubMed  Google Scholar 

  24. Swanson L (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  CAS  PubMed  Google Scholar 

  25. Abrahams S, Morris R, Polkey C et al (1999) Hippocampal involvement in spatial and working memory: a structural MRI analysis of patients with unilateral mesial temporal lobe sclerosis. Brain Cogn 4:39–65

    Article  Google Scholar 

  26. Wilkerson A, Levin E (1999) Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neurosceence 89:743–749

    Article  CAS  Google Scholar 

  27. Churchwell J, Kesner R (2011) Hippocampal–prefrontal dynamics in spatial working memory:interactions and independent parallel processing. Behav Brain Res 225:389–395

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tellez R, Gómez-Víquez L, Meneses A (2012) GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol Learn Mem 97:189–201

    Article  CAS  PubMed  Google Scholar 

  29. Kern C, Stanwood G, Smith D (2010) Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse 64:363–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lisman J, Grace A (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  PubMed  Google Scholar 

  31. Gangarossa G, Longueville S, De Bunde lD et al (2012) Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22:2199–2207

    Article  CAS  PubMed  Google Scholar 

  32. Mu¨ller U, von Cramon DY, Pollmann S (1998) D1-versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 18:2720–2728

    Google Scholar 

  33. Aalto S, Brück A, Laine M et al (2005) Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. J Neurosci 25:2471–2477

    Article  CAS  PubMed  Google Scholar 

  34. Mehta M, Montgomery A, Kitamura Y et al (2008) Dopamine D2 receptor occupancy levels of acute sulpiride challenges that produce working memory and learning impairments in healthy volunteers. Psychopharmacology 196:157–165

    Article  CAS  PubMed  Google Scholar 

  35. Von Huben S, Davis S, Lay C, Katner S et al (2006) Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys. Psychopharmacology 188:586–596

    Article  CAS  Google Scholar 

  36. Tarantino I, Sharp R, Geyer M et al (2011) Working memory span capacity improved by a D2 but not D1 receptor family agonist. Behav Brain Res 219:181–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xu H, Yang H, Rose G (2012) Chronic haloperidol-induced spatial memory deficits accompany the upregulation ofD1 and D2 receptors in the caudate putamen of C57BL/6 mouse. Life Sci 91:322–328

    Article  CAS  PubMed  Google Scholar 

  38. Jia J, Zhao J, Hu Z et al (2013) Age-dependent regulation of synaptic connections by dopamine D2 receptors. Nat Neurosci 16:1627–1636

    Article  CAS  PubMed  Google Scholar 

  39. Peng Z, Wang H, Zhang R et al (2013) Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1β level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder. Physiol Res 62:537–545

    CAS  PubMed  Google Scholar 

  40. Sarter M, Bodewitz G, Stephens D (1988) Attention of scopolamine-induced impairment of spontaneous alternation behavior by antagonist but not inverse agonist and agonist β-carbolines. Psychopharmacology 94:491–495

    Article  CAS  PubMed  Google Scholar 

  41. Llorens J, Crofton K, Peele D (1994) Effects of 3,3′-iminodipropionitrile on acquisition and performance of spatial tasks in rats. Neurotoxicol Teratol 16:583–591

    Article  CAS  PubMed  Google Scholar 

  42. Zeng X, Zhang S, Zhang L et al (2006) A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Medica (Planta Med) 72:1359–1365

    Article  CAS  Google Scholar 

  43. Kawada Y, Ogawa N, Asanuma M et al (1995) Neuropeptide levels in discrete brain regions in the iminodipropionitrile-induced persistent dyskinesia rat model. Regul Pept 55:103–110

    Article  CAS  PubMed  Google Scholar 

  44. Chen P, Hsieh C, Su K et al (2009) Rhizomes of Gastrodia elata BL possess antidepressant-like effect via monoamine modulation in subchronic animal model. Am J Chin Med 37:1113

    Article  PubMed  Google Scholar 

  45. Shin E, Bach J, Nguyen T et al (2011) Methamphetamine ethamphetamine attenuates methamphetamine-induced dopaminergic toxicity via inhibiting oxidative burdens. Curr Neuropharmacol 9:118–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gasbarri A, Sulli A, Innocenzi R et al (1996) Spatial memory impairment induced by lesions of the mesohippocampal dopaminergic system in the rat. Neuroscience 74:1037–1044

    Article  CAS  PubMed  Google Scholar 

  47. Mehta M, Gumaste D, Montgomery AJ et al (2005) The effects of acute tyrosine and phenylalanine depletion on spatial working memory and planning in healthy volunteers are predicted by changes in striatal dopamine levels. Psychopharmacology 180:654–663

    Article  CAS  PubMed  Google Scholar 

  48. Pioli E, Meissner W, Sohr R et al (2008) Differential behavioral effects of partial bilateral lesions of ventral tegmental area or substantia nigra pars compacta in rats. Neuroseicenc 153:1213–1224

    Article  CAS  Google Scholar 

  49. Hirata H, Ogawa N, Asanuma M (1993) Effect of chronic ceruletide treatment on dopaminergic neurotransmitters, receptors and their mRNAs in the striatum of rats with dyskinesia induced by iminodipropionitrile. Brain Res 604:197–204

    Article  CAS  PubMed  Google Scholar 

  50. Varrone A, Halldin C (2010) Molecular imaging of the dopamine transporter. J Nucl Med 51:1331–1334

    Article  CAS  PubMed  Google Scholar 

  51. Volkow N, Chang L, Wang G et al (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  CAS  PubMed  Google Scholar 

  52. Li BAY, Hall FS, Uhl GR et al (2010) Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. Eur J Pharmacol 628:104–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sora I, Li B, Fumushima S et al (2009) Monoamine transporter as a target molecule for psychostimulants. Int Rev Neurobiol 85:29–33

    Article  CAS  PubMed  Google Scholar 

  54. Rao A, Sorkin A, Zahniser N (2013) Mice expressing markedly reduced striatal dopamine transporters exhibit increased locomotor activity, dopamine uptake turnover rate, and cocaine responsiveness. Synapse 67:668–677

    Article  CAS  PubMed  Google Scholar 

  55. Wang D, Li W, Liu X et al (2013) Chinese medicine formula “Jian-Pi-Zhi-DongDecoction” attenuates Tourette syndrome via downregulating the expression of dopamine transporter in mice. Evid Based Complement Altern Med 2013

  56. Afonso-Oramas D, Cruz-Muros I, Barroso-Chinea P et al (2010) The dopamine transporter is differentially regulated after dopaminergic lesion. Neurobiology of Disease 40:518–530

    Article  CAS  PubMed  Google Scholar 

  57. Bowton E, Saunders C, Erreger K et al (2010) Dysregulation of dopamine transporters via dopamine D2 autoreceptors triggers anomalous dopamine efflux associated with attention-deficit hyperactivity disorder. J Neurosci 30:6048–6057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yan, S., Wang, A. et al. Gastrodin Ameliorates Memory Deficits in 3,3′-Iminodipropionitrile-Induced Rats: Possible Involvement of Dopaminergic System. Neurochem Res 39, 1458–1466 (2014). https://doi.org/10.1007/s11064-014-1335-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1335-x

Keywords

Navigation