Skip to main content

Advertisement

Log in

Sphingosine Kinase-1 Protects Differentiated N2a Cells Against Beta-Amyloid25–35-Induced Neurotoxicity Via the Mitochondrial Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Although the etiology of Alzheimer’s disease (AD) is not fully understood, multiple lines of evidence suggests the importance of amyloid-β (Aβ) in the initiation/progression of the disease. Aβ has been shown to induce neuronal apoptosis via the sphingomyelin/ceramide pathway. This study was designed to elucidate whether the sphingosine kinase-1 (SPK1), a critical regulator of the ceramide/sphingosine 1-phosphate rheostat, plays a pivotal role in the regulation of death and survival of differentiated neuro-2a cells in response to beta-amyloid peptide fragment 25–35 (Aβ25–35). These results show that the expression of SPK1 was markedly decreased in Aβ25–35-induced neurotoxicity, as evidenced by the decreased cell viability and the increased apoptotic rate. Overexpression of SPK1 significantly attenuated Aβ25–35-induced neurotoxicity, whereas silencing the expression of SPK1 exacerbated it. Moreover, overexpression of SPK1 can significantly attenuate Aβ25–35-induced upregulation of Bax and rehabilitate the level of Bcl-2; concomitantly, it can ameliorate mitochondrial ultrastructure. These studies demonstrate that overexpression of SPK1 may moderate Aβ25–35-induced neurotoxicity by regulating the Bcl-2/Bax ratio and improving mitochondrial ultrastructure. Based on these findings, SPK1 is a potential therapeutic target for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4(8):604–616

    Article  CAS  PubMed  Google Scholar 

  2. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407

    Article  CAS  PubMed  Google Scholar 

  3. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–803

    Article  CAS  PubMed  Google Scholar 

  4. Grace EA, Rabiner CA, Busciglio J (2002) Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer’s disease. Neuroscience 114(1):265–273

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis K, Assis-Nascimento P, Mudd LM, Montague JR (2007) Beta-amyloid toxicity and reversal in embryonic rat septal neurons. Neurosci Lett 423(3):184–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gomez-Brouchet A, Pchejetski D, Brizuela L, Garcia V, Altie MF, Maddelein ML, Delisle MB, Cuvillier O (2007) Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide. Mol Pharmacol 72(2):341–349

    Article  CAS  PubMed  Google Scholar 

  7. McNamara W (1975) Exorcising HEW. Change 7(7):47–48, 63

    Google Scholar 

  8. Smale G, Nichols NR, Brady DR, Finch CE, Horton WE Jr (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133(2):225–230

    Article  CAS  PubMed  Google Scholar 

  9. He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3):398–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, Watanabe M, Oka N, Akiguchi I, Furuya S, Hirabayashi Y, Okazaki T (2005) Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 130(3):657–666

    Article  CAS  PubMed  Google Scholar 

  11. Jana A, Pahan K (2004) Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem 279(49):51451–51459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ju TC, Chen SD, Liu CC, Yang DI (2005) Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity. Free Radic Biol Med 38(7):938–949

    Article  CAS  PubMed  Google Scholar 

  13. Malaplate-Armand C, Florent-Bechard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier JL, Oster T, Pillot T (2006) Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 23(1):178–189

    Article  CAS  PubMed  Google Scholar 

  14. Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, Chen S, Hsu CY (2004) Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 164(1):123–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 37(3):325–338

    Article  CAS  PubMed  Google Scholar 

  16. Alessenko AV, Bugrova AE, Dudnik LB (2004) Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem Soc Trans 32(Pt 1):144–146

    Article  CAS  PubMed  Google Scholar 

  17. Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147(3):545–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Edsall LC, Cuvillier O, Twitty S, Spiegel S, Milstien S (2001) Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J Neurochem 76(5):1573–1584

    Article  CAS  PubMed  Google Scholar 

  19. Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, Mazerolles C, Rischmann P, Teissie J, Malavaud B, Cuvillier O (2005) Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 65(24):11667–11675

    Article  CAS  PubMed  Google Scholar 

  20. Duan HF, Wang H, Yi J, Liu HJ, Zhang QW, Li LB, Zhang T, Lu Y, Wu CT, Wang LS (2007) Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Hum Gene Ther 18(11):1119–1128

    Article  CAS  PubMed  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  22. St-Laurent-Thibault C, Arseneault M, Longpre F, Ramassamy C (2011) Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-beta-induced toxicity. Involvement of the NF-kappaB signaling. Curr Alzheimer Res 8(5):543–551

    Article  CAS  PubMed  Google Scholar 

  23. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B, Reddy PH (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

    PubMed Central  PubMed  Google Scholar 

  24. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16(5):921–932

    Article  CAS  PubMed  Google Scholar 

  25. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245(4916):417–420

    Article  CAS  PubMed  Google Scholar 

  26. Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Conformations and biological activities of amyloid beta peptide 25–35. Curr Protein Pept Sci 11(1):54–67

    Article  CAS  PubMed  Google Scholar 

  27. Ban JY, Cho SO, Jeon SY, Bae K, Song KS, Seong YH (2007) 3,4-Dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid beta protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 420(2):184–188

    Article  CAS  PubMed  Google Scholar 

  28. Qin XY, Cheng Y, Cui J, Zhang Y, Yu LC (2009) Potential protection of curcumin against amyloid beta-induced toxicity on cultured rat prefrontal cortical neurons. Neurosci Lett 463(2):158–161

    Article  CAS  PubMed  Google Scholar 

  29. Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A (1996) Amyloid beta peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates Bax expression in human neurons. J Neurosci 16(23):7533–7539

    CAS  PubMed  Google Scholar 

  30. Tortosa A, Lopez E, Ferrer I (1998) Bcl-2 and Bax protein expression in Alzheimer’s disease. Acta Neuropathol 95(4):407–412

    Article  CAS  PubMed  Google Scholar 

  31. Limaye V, Li X, Hahn C, Xia P, Berndt MC, Vadas MA, Gamble JR (2005) Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3 K/Akt and regulation of Bcl-2 family members. Blood 105(8):3169–3177

    Article  CAS  PubMed  Google Scholar 

  32. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  33. Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39(11):615–647

    Article  CAS  PubMed  Google Scholar 

  34. Selznick LA, Zheng TS, Flavell RA, Rakic P, Roth KA (2000) Amyloid beta-induced neuronal death is Bax-dependent but caspase-independent. J Neuropathol Exp Neurol 59(4):271–279

    CAS  PubMed  Google Scholar 

  35. Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25(5):1149–1158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Chinese National Science Foundation (81070879). We thank Dr. Haifeng Duan (Department of Experimental Hematology, Beijing Institute of Radiation Medicine) for the plasmids encoding wild-type hSPK1.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wang, M., Lv, B. et al. Sphingosine Kinase-1 Protects Differentiated N2a Cells Against Beta-Amyloid25–35-Induced Neurotoxicity Via the Mitochondrial Pathway. Neurochem Res 39, 932–940 (2014). https://doi.org/10.1007/s11064-014-1290-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1290-6

Keywords

Navigation