Skip to main content

Advertisement

Log in

Social Isolation Stress-Induced Fear Memory Deficit is Mediated by Down-Regulated Neuro-Signaling System and Egr-1 Expression in the Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We previously reported that social isolation (SI) rearing of rodents not only elicits a variety of behavioral abnormalities including attention deficit hyperactivity disorder-like behaviors, but also impairs fear memory in mice. This study aimed to clarify a putative mechanism underlying SI-induced conditioned fear memory deficit. Mice were group-housed (GH) or socially isolated for 2 weeks or more before the experiments. SI animals acquired contextual and auditory fear memory elucidated at 90 min and 4 h after training, respectively; however, they showed significantly impaired contextual and auditory memory performance at 24 h and 4 days after the training, respectively, indicating SI-induced deficit of the consolidation process of fear memory. Neurochemical studies conducted after behavioral tests revealed that SI mice had a significantly down-regulated level of Egr-1 but not Egr-2 in the hippocampal and cortical cytosolic fractions compared with those levels in the GH control animals. Moreover, in the SI group, phosphorylated levels of synaptic plasticity-related signaling proteins in the hippocampus, NR1 subunit of N-methyl-d-aspartate receptor, glutamate receptor 1, and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein were significantly down-regulated compared with those levels in GH animals, whereas non-phosphorylated levels of these proteins were not affected by SI. These findings suggest that dysfunctions of Egr-1 and neuro-signaling systems are involved in SI-induced deficits of fear memory consolidation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matsumoto K, Cai B, Satoh T, Ohta H, Watanabe H (1991) Desipramine enhances isolation-induced aggressive behavior in mice. Pharmacol Biochem Behav 39:167–170

    Article  CAS  PubMed  Google Scholar 

  2. Ojima K, Matsumoto K, Tohda M, Watanabe H (1995) Hyperactivity of central noradrenergic and CRF systems is involved in social isolation-induced decrease in pentobarbital sleep. Brain Res 684:87–94

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienville JM, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963

    Article  CAS  PubMed  Google Scholar 

  4. Matsumoto K, Pinna G, Puia G, Guidotti A, Costa E (2005) Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 8:85–93

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto K, Puia G, Dong E, Pinna G (2007) GABAAA receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. Stress 10:3–12

    Article  CAS  PubMed  Google Scholar 

  6. Powell SB, Geyer MA, Preece MA, Pitcher LK, Reynolds GP, Swerdlow NR (2003) Dopamine depletion of the nucleus accumbens reverses isolation-induced deficits in prepulse inhibition in rats. Neuroscience 119:233–240

    Article  CAS  PubMed  Google Scholar 

  7. Fone KC, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087–1102

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto K, Ono K, Ouchi H, Tsusima R-H, Murakami Y (2012) Social isolation stress down-regulates cortical early growth response 1 (Egr-1) in mice. Neurosci Res 73:257–262

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Carter J, Gao X, Whitehead J, Tourtellotte WG (2005) The neuroplasticity-associated Arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Mol Cell Biol 25:10286–10300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Aruga J, Minabe Y, Tonegawa S, Yoshikawa T (2007) Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 104:2815–2820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ouchi H, Ono K, Murakami Y, Matsumoto K (2013) Social isolation induces deficit of latent learning performance in mice: a putative animal model of attention deficit/hyperactivity disorder. Behav Brain Res 238:146–153

    Article  PubMed  Google Scholar 

  12. Mokin M, Keifer J (2005) Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning. Learn Mem 12:144–149

    Article  PubMed Central  PubMed  Google Scholar 

  13. Malkani S, Wallace KJ, Donley MP, Rosen JB (2004) An egr-1 (zif268) antisense oligodeoxynucleotide infused into the amygdala disrupts fear conditioning. Learn Mem 11:617–624

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rosen JB, Adamec RE, Thompson BL (2005) Expression of egr-1 (zif268) mRNA in select fear-related brain regions following exposure to a predator. Behav Brain Res 162:279–288

    Article  CAS  PubMed  Google Scholar 

  15. Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74:183–211

    Article  CAS  PubMed  Google Scholar 

  16. Yamada M, Hayashida M, Zhao Q, Shibahara N, Tanaka K, Miyata T, Matsumoto K (2011) Ameliorative effects of yokukansan on learning and memory deficits in olfactory bulbectomized mice. J Ethnopharmacol 135:737–746

    Article  PubMed  Google Scholar 

  17. Le XT, Pham HT, Do PT, Fujiwara H, Tanaka K, Li F, Van Nguyen T, Nguyen KM, Matsumoto K (2013) Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem Res 38:2201–2215

    Article  CAS  PubMed  Google Scholar 

  18. Casu MA, Sanna A, Spada GP, Falzoi M, Mongeau R, Pani L (2007) Effects of acute and chronic valproate treatments on p-CREB levels in the rat amygdala and nucleus accumbens. Brain Res 1141:15–24

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Q, Matsumoto K, Tsuneyama K, Tanaka K, Li F, Shibahara N, Miyata T, Yokozawa T (2011) Diabetes-induced central cholinergic neuronal loss and cognitive deficit are attenuated by tacrine and a Chinese herbal prescription, kangen-karyu: elucidation in type 2 diabetes db/db mice. J Pharmacol Sci 117:230–242

    Article  CAS  PubMed  Google Scholar 

  20. Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    CAS  PubMed  Google Scholar 

  21. Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cowan N (2008) What are the differences between long-term, short-term, and working memory? Prog Brain Res 169:323–338

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  24. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  25. Maddox SA, Monsey MS, Schafe GE (2011) Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdala. Learn Mem 18:24–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  CAS  PubMed  Google Scholar 

  27. Lau GC, Saha S, Faris R, Russek SJ (2004) Up-regulation of NMDAR1 subunit gene expression in cortical neurons via a PKA-dependent pathway. J Neurochem 88:564–575

    Article  CAS  PubMed  Google Scholar 

  28. Zhao H, Li Q, Pei X, Zhang Z, Yang R, Wang J, Li Y (2009) Long-term ginsenoside administration prevents memory impairment in aged C57BL/6 J mice by up-regulating the synaptic plasticity-related proteins in hippocampus. Behav Brain Res 201:311–317

    Article  CAS  PubMed  Google Scholar 

  29. Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53:362–368

    Article  PubMed Central  PubMed  Google Scholar 

  30. Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16:1179–1188

    Article  CAS  PubMed  Google Scholar 

  31. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  CAS  PubMed  Google Scholar 

  32. Lamprecht R (1999) CREB: a message to remember. Cell Mol Life Sci 55:554–563

    Article  CAS  PubMed  Google Scholar 

  33. Vaynman S, Ying Z, Gomez-Pinilla F (2007) The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience 144:825–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28:2278–2287

    Article  PubMed Central  PubMed  Google Scholar 

  35. Moriguchi S, Han F, Nakagawasai O, Tadano T, Fukunaga K (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem 97:22–29

    Article  CAS  PubMed  Google Scholar 

  36. Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138:9–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was in part supported by a Grant-in-Aid for Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) to KM (#24659347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinzo Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, R., Matsumoto, K., Tsushima, R. et al. Social Isolation Stress-Induced Fear Memory Deficit is Mediated by Down-Regulated Neuro-Signaling System and Egr-1 Expression in the Brain. Neurochem Res 39, 875–882 (2014). https://doi.org/10.1007/s11064-014-1283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1283-5

Keywords

Navigation