Skip to main content

Advertisement

Log in

Subchronic Oral Administration of Benzo[a]pyrene Impairs Motor and Cognitive Behavior and Modulates S100B Levels and MAPKs in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene (BaP) is an environmental contaminant produced during incomplete combustion of organic material that is well known as a mutagenic and carcinogenic toxin. There are few studies addressing the molecular and cellular basis of behavioural alterations related to BaP exposure. The aim of this study was to evaluate the effect of subchronic oral administration of BaP on behavioral and neurochemical parameters. Wistar male rats received BaP (2 mg/kg) or corn oil (control), once a day for 28 days (n = 12/group). Spontaneous locomotor activity and short- and long-term memories were evaluated. Glial fibrillary acid protein and S100B content in the hippocampus, serum and CSF were measured using ELISA and total and phosphorylated forms of mitogen activated protein kinases (MAPKs) named extracellular signal-regulated kinases 1 and 2, p38MAPK and c-Jun amino-terminal kinases 1 and 2, in the hippocampus, were evaluated by western blotting. BaP induced a significant increase on locomotor activity and a decrease in short-term memory. S100B content was increased significantly in cerebrospinal fluid. BaP induced a decrease on ERK2 phosphorylation in the hippocampus. Thus, BaP subchronic treatment induces an astroglial response and impairs both motor and cognitive behavior, with parallel inhibition of ERK2, a signaling enzyme involved in the hippocampal neuroplasticity. All these effects suggest that BaP neurotoxicity is a concern for environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). In: Agency for Toxic Substances and Disease Registry, Atlanta, GA

  2. Liu SH, Wang JH, Chuu JJ, Lin-Shiau SY (2002) Alterations of motor nerve functions in animals exposed to motorcycle exhaust. J Toxicol Environ Health A 65:803–812

    Article  PubMed  CAS  Google Scholar 

  3. IARC (2012) Benzo[a]pyrene. NB: overall evaluation upgraded to Group 1 based on mechanistic and other relevant data. IARC Monogr Eval Carcinog Risk Chem Man 92:111–144

    Google Scholar 

  4. Enomoto M, Tierney WJ, Nozaki K (2008) Risk of human health by particulate matter as a source of air pollution—comparison with tobacco smoking. J Toxicol Sci 33:251–267

    Article  PubMed  CAS  Google Scholar 

  5. IARC (1973) Certain polycyclic aromatic hydrocarbons and heterocyclic compounds. IARC Monogr Eval Carcinog Risk Chem Man 3:1–271

    Google Scholar 

  6. Das M, Mukhtar H, Seth P (1985) Distribution of benzo(a)pyrene in discrete regions of rat brain. Bull Environ Contam Toxicol 35:500–504

    Article  PubMed  CAS  Google Scholar 

  7. Yan T, Chengzhi C, Haiyan Y, Baijie T (2010) Distribution of benzo[a]pyrene in discrete regions of rat brain tissue using light microscopic autoradiography and gamma counting. Toxicol Environ Chem 92:1309–1317

    Article  CAS  Google Scholar 

  8. Zola-Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250:288–290

    Article  PubMed  CAS  Google Scholar 

  9. Lubenov EV, Siapas AG (2009) Hippocampal theta oscillations are travelling waves. Nature 459:534–539

    Article  PubMed  CAS  Google Scholar 

  10. Tang Q, Xia YY, Cheng SQ, Tu BJ (2011) Modulation of behavior and glutamate receptor mRNA expression in rats after sub-chronic administration of benzo(a)pyrene. Biomed Environ Sci 24:408–414

    PubMed  CAS  Google Scholar 

  11. Xia Y, Cheng S, He J, Liu X, Tang Y, Yuan H, He L, Lu T, Tu B, Wang Y (2011) Effects of subchronic exposure to benzo[a]pyrene (B[a]P) on learning and memory, and neurotransmitters in male Sprague–Dawley rat. Neurotoxicology 32:188–198

    Article  PubMed  CAS  Google Scholar 

  12. Nie J, Duan L, Yan Z, Niu Q (2013) Tau hyperphosphorylation is associated with spatial learning and memory after exposure to benzo[a]pyrene in SD rats. Neurotox Res 24:461–471

    Article  PubMed  CAS  Google Scholar 

  13. Patri M, Singh A, Mallick BN (2013) Protective role of noradrenaline in benzo[a]pyrene-induced learning impairment in developing rat. J Neurosci Res 91:1450–1462

    Article  PubMed  CAS  Google Scholar 

  14. Chengzi C, Yan T, Shuqun C, Xuejun J, Youbin Q, Yinyin X, Quian T, Baijie T (2011) New candidate proteins for benzo(a)pyrene-induced spatial learning and memory deficits. J Toxicol Sci 36:163–171

    Article  Google Scholar 

  15. Chongying Q, Bin P, Shuqun C, Yinyian X, Baijie T (2013) The effect of occupational exposure to benzo[a]pyrene on neurobehavioral function in coke oven workers. Am J Ind Med 56:347–355

    Article  CAS  Google Scholar 

  16. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  17. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022

    Article  PubMed  CAS  Google Scholar 

  18. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108

    PubMed  Google Scholar 

  19. Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P, Cunha AB, Cereser KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Gonçalves CA (2007) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529

    Article  PubMed  Google Scholar 

  20. Vicente E, Boer M, Leite M, Silva M, Tramontina F, Porciuncula L, Dalmaz C, Gonçalves CA (2004) Cerebrospinal fluid S100B increases reversibly in neonates of methyl mercury-intoxicated pregnant rats. Neurotoxicology 25:771–777

    Article  PubMed  CAS  Google Scholar 

  21. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:1–7

    Article  CAS  Google Scholar 

  22. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  PubMed  CAS  Google Scholar 

  23. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476

    Article  PubMed  CAS  Google Scholar 

  25. Jerusalinsky D, Ferreira MB, Walz R, Da Silva RC, Bianchin M, Ruschel AC, Zanatta MS, Medina JH, Izquierdo I (1992) Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behav Neural Biol 58:76–80

    Article  PubMed  CAS  Google Scholar 

  26. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    Article  PubMed  CAS  Google Scholar 

  27. Runchel C, Matsuzawa A, Ichijo H (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 15:205–218

    Article  PubMed  CAS  Google Scholar 

  28. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  PubMed  CAS  Google Scholar 

  29. Sanderson JL, Dell’Acqua ML (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17:321–336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Olfert ED, Cross BM, McWilliam A (1998) Manual sobre el cuidado y uso de los animales de experimentación. Canadian Council on Animal Care, Ontario

    Google Scholar 

  31. OECD (1995) Organisation for Economic Co-operation and Development. Guideline 407: repeated Dose 28-day Oral Toxicity Study in Rodent. Head of Publications Service, Paris

  32. Creese I, Burt DR, Snyder SH (1976) Dopamine-receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  33. Schröder N, O’Dell SJ, Marshall JF (2003) Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse 49:89–96

    Article  PubMed  CAS  Google Scholar 

  34. de Lima MNM, Laranja DC, Caldana F, Bromberg E, Roesler R, Schröder N (2005) Reversal of age-related deficits in object recognition memory in rats with l-deprenyl. Exp Gerontol 40:506–511

    Article  PubMed  CAS  Google Scholar 

  35. de Lima MNM, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC, Dal-Pizzol F, Schröder N (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 2:2521–2528

    Article  Google Scholar 

  36. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1. Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  37. Soellner DE, Grandys T, Nuñez JL (2009) Chronic prenatal caffeine exposure impairs novel object recognition and radial arm maze behaviors in adult rats. Behav Brain Res 205:191–199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Moojen VKM, Damiani-Neves M, Bavaresco BV, Pescador BB, Comim CM, Quevedo J, Boeck CR (2012) NMDA preconditioning prevents object recognition memory impairment and increases brain viability in mice exposed to traumatic brain injury. Brain Res 23:82–90

    Article  CAS  Google Scholar 

  39. Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P, Benfato MS, Giugliani R, Gonçalves CA (2006) Serum S100B protein is increased in fasting rats. Arch Med Res 37:683–686

    Article  PubMed  CAS  Google Scholar 

  40. Lopes MW, Soares FM, de Mello N, Nunes JC, Caiado AG, de Brito D, de Cordova FM, da Cunha RM, Walz R, Leal RB (2013) Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of apilepsy. Exp Brain Res 226:153–163

    Article  PubMed  CAS  Google Scholar 

  41. Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Gonçalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99

    Article  PubMed  CAS  Google Scholar 

  42. Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, Andreazza AC, Gottfried C, Kapczinski F, Gonçalves CA (2007) Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282–286

    Article  PubMed  CAS  Google Scholar 

  43. Oliveira CS, Rigon AP, Leal RB, Rossi FM (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 26:355–362

    Article  PubMed  CAS  Google Scholar 

  44. Peterson GLA et al (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  45. Leal RB, Cordova FM, Herd L, Bobrovskaya L, Dunkley PR (2002) Lead-stimulated p38 MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 178:44–51

    Article  PubMed  CAS  Google Scholar 

  46. Cordova FM, Rodrigues AL, Giacomelli MB, Oliveira CS, Posser T, Dunkley PR, Leal RB (2004) Lead stimulates ERK1/2 and p38 MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998:65–72

    Article  PubMed  CAS  Google Scholar 

  47. Bjerrum OJH, Heegaard NHH (1988) CRC handbook of immunoblotting of proteins, vol I. CRC Press, London

    Google Scholar 

  48. Posser T, de Aguiar CB, Garcez RC, Rossi FM, Oliveira CS, Trentin AG, Neto VM, Leal RB (2007) Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38(MAPK) and JNK1/2 but not of ERK1/2. Arch Toxicol 81:407–414

    Article  PubMed  CAS  Google Scholar 

  49. Saunders CR, Ramesh A, Shockley DC (2002) Modulation of neurotoxic behavior in F-344 rats by temporal disposition of benzo(a)pyrene. Toxicol Lett 129:33–45

    Article  PubMed  CAS  Google Scholar 

  50. Saunders CR, Das SK, Ramesh A, Shockley DC, Mukherjee S (2006) Benzo(a)pyrene-induced acute neurotoxicity in the F-344 rat: role of oxidative stress. J Appl Toxicol 26:427–438

    Article  PubMed  CAS  Google Scholar 

  51. Sik A, van Nieuwehuyzen P, Prickaerts J, Blokland A (2003) Performance of different mouse strains in an object recognition task. Behav Brain Res 147:49–54

    Article  PubMed  Google Scholar 

  52. Farina M, Cereser V, Portela LV, Mendez A, Porciúncula LO, Fornaguera J, Gonçalves CA, Wofchuk ST, Rocha JB, Souza DO (2005) Methylmercury increases S100B content in rat cerebrospinal fluid. Environ Toxicol Pharmacol 19:249–253

    Article  PubMed  CAS  Google Scholar 

  53. Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41:755–763

    Article  PubMed  CAS  Google Scholar 

  54. Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D (2012) The S100B protein in biological fluids: more than a lifelong biomarker ofbrain distress. J Neurochem 120:644–659

    Article  PubMed  CAS  Google Scholar 

  55. Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61:1939–1958

    Article  PubMed  Google Scholar 

  56. Gu J, Chan LS, Wong CK, Wong NS, Wong CK, Leung KN, Mak NK (2011) Effect of benzo[a]pyrene on the production of vascular endothelial growth factor by human eosinophilic leukemia EoL-1 cells. J Environ Pathol Toxicol Oncol 30:241–249

    Article  PubMed  CAS  Google Scholar 

  57. Gonçalves CA, Leite MC, Guerra MC (2010) Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010:790431

  58. Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall’Igna O, Mazzini GS, Souza DO, Portela LV (2010) Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflamm 7:6

    Article  CAS  Google Scholar 

  59. Guerra MC, Tortorelli LS, Galland F, Da Ré C, Negri E, Engelke DS, Rodrigues L, Leite MC, Gonçalves CA (2011) Lipopolysaccharide modulates astrocytic S100B secretion: a study in cerebrospinal fluid and astrocyte cultures from rats. J Neuroinflamm 8:128

    Article  CAS  Google Scholar 

  60. Lin T, Mak NK, Yang MS (2008) MAPK regulate p53 dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation. Toxicology 247:145–153

    Article  PubMed  CAS  Google Scholar 

  61. Song MK, Kim YJ, Song M, Choi HS, Park YK, Ryu JC (2011) Polycyclic aromatic hydrocarbons induce migration in human hepatocellular carcinoma cells (HepG2) through reactive oxygen species-mediated p38 MAPK signal transduction. Cancer Sci 102:1636–1644

    Article  PubMed  CAS  Google Scholar 

  62. Torii S, Nakayama K, Yamamoto T, Nishida E (2004) Regulatory mechanisms and function of ERK MAP kinases. J Biochem 136:557–561

    Article  PubMed  CAS  Google Scholar 

  63. Iryo Y, Matsuoka M, Wispriyono B, Sugiura T, Igisu H (2000) Involvement of the extracellular signal regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRFCEM cells. Biochem Pharmacol 60:1875–1882

    Article  PubMed  CAS  Google Scholar 

  64. Igaz LM, Winograd M, Cammarota M, Izquierdo LA, Alonso M, Izquierdo I, Medina JH (2006) Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cell Mol Neurobiol 26:989–1002

    Article  PubMed  CAS  Google Scholar 

  65. Weng MW, Hsiao YM, Chen CJ, Wang JP, Chen WC, Ko JL (2004) Benzo[a]pyrene diol epoxide up-regulates COX-2 expression through NF-kappaB in rat astrocytes. Toxicol Lett 151:345–355

    Article  PubMed  CAS  Google Scholar 

  66. Bae MK, Kim SR, Lee HJ, Wee HJ, Yoo MA, Ock OS, Baek SY, Kim BS, Kim JB, Sik-Yoon, Bae SK (2006) Aspirin-induced blockade of NF-kappaB activity restrains up-regulation of glial fibrillary acidic protein in human astroglial cells. Biochim Biophys Acta 1763:282–289

    Article  PubMed  CAS  Google Scholar 

  67. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Instituto Nacional de Ciência e Tecnologia para (INCT) a Análise Integrada do Risco Ambiental.

Conflict of interest

The authors declared that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirna Bainy Leal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciel, É.S., Biasibetti, R., Costa, A.P. et al. Subchronic Oral Administration of Benzo[a]pyrene Impairs Motor and Cognitive Behavior and Modulates S100B Levels and MAPKs in Rats. Neurochem Res 39, 731–740 (2014). https://doi.org/10.1007/s11064-014-1261-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1261-y

Keywords

Navigation