Skip to main content

Advertisement

Log in

Protective Effects of Zonisamide Against Rotenone-Induced Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson’s disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10–100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112. doi:10.1196/annals.1418.005

    Article  PubMed  CAS  Google Scholar 

  2. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. doi:10.1074/jbc.M401135200

    Article  PubMed  CAS  Google Scholar 

  3. Halliday GM, Ophof A, Broe M, Jensen PH, Kettle E et al (2005) Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain 128:2654–2664. doi:10.1093/brain/awh584

    Article  PubMed  Google Scholar 

  4. Chinta SJ, Kumar JM, Zhang H, Forman HJ, Andersen JK (2006) Up-regulation of gamma-glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson’s disease. Free Radic Biol Med 40:1557–1563. doi:10.1016/j.freeradbiomed.2005.12.023

    Article  PubMed  CAS  Google Scholar 

  5. Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  PubMed  CAS  Google Scholar 

  6. Schapira AHV (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224:331–335. doi:10.1016/j.expneurol.2010.03.028

    Article  PubMed  CAS  Google Scholar 

  7. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64

    Article  PubMed  Google Scholar 

  8. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. doi:10.1038/81834

    Article  PubMed  CAS  Google Scholar 

  9. Martins JB, de Bastos ML, Carvalho F, Capela JP (2013) Differential effects of methyl-4-phenylpyridinium ion, rotenone, and paraquat on differentiated SH-SY5Y cells. J Toxicol 2013:347312. doi:10.1155/2013/347312

    PubMed  Google Scholar 

  10. Costa C, Belcastro V, Tozzi A, Di Filippo M, Tantucci M et al (2008) Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J Neurosci 28:8040–8052. doi:10.1523/JNEUROSCI.1947-08.2008

    Article  PubMed  CAS  Google Scholar 

  11. Biton V (2007) Clinical pharmacology and mechanism of action of zonisamide. Clin Neuropharmacol 30:230–240. doi:10.1097/wnf.0b013e3180413d7d

    PubMed  CAS  Google Scholar 

  12. Johannessen Landmark C (2008) Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs 22:27–47

    Article  PubMed  Google Scholar 

  13. Kothare SV, Kaleyias J (2008) Zonisamide: review of pharmacology, clinical efficacy, tolerability, and safety. Expert Opin Drug Metab Toxicol 4:493–506. doi:10.1517/17425255.4.4.493

    Article  PubMed  CAS  Google Scholar 

  14. Costa C, Tozzi A, Luchetti E, Siliquini S, Belcastro V et al (2010) Electrophysiological actions of zonisamide on striatal neurons: selective neuroprotection against complex I mitochondrial dysfunction. Exp Neurol 221:217–224. doi:10.1016/j.expneurol.2009.11.002

    Article  PubMed  CAS  Google Scholar 

  15. Sonsalla PK, Wong L-Y, Winnik B, Buckley B (2010) The antiepileptic drug zonisamide inhibits MAO-B and attenuates MPTP toxicity in mice: clinical relevance. Exp Neurol 221:329–334. doi:10.1016/j.expneurol.2009.11.018

    Article  PubMed  CAS  Google Scholar 

  16. Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J et al (2011) Agmatine effects on mitochondrial membrane potential andNF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116:67–75. doi:10.1111/j.1471-4159.2010.07085.x

    Article  PubMed  CAS  Google Scholar 

  17. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. doi:10.1038/20959

    Article  PubMed  CAS  Google Scholar 

  18. Yu Z, Li W, Hillman J, Brunk UT (2004) Human neuroblastoma (SH-SY5Y) cells are highly sensitive to the lysosomotropic aldehyde 3-aminopropanal. Brain Res 1016:163–169. doi:10.1016/j.brainres.2004.04.075

    Article  PubMed  CAS  Google Scholar 

  19. Galluzzi L, Morselli E, Kepp O, Kroemer G (2009) Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim Biophys Acta 1787:402–413. doi:10.1016/j.bbabio.2008.09.006

    Article  PubMed  CAS  Google Scholar 

  20. Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246. doi:10.1016/j.expneurol.2009.03.006

    Article  PubMed  Google Scholar 

  21. Nisticò R, Mehdawy B, Piccirilli S, Mercuri N (2011) Paraquat- and rotenone-induced models of Parkinson’s disease. Int J Immunopathol Pharmacol 24:313–322

    PubMed  Google Scholar 

  22. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618. doi:10.1155/2012/845618

    Article  PubMed  Google Scholar 

  23. Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K (2006) D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson’s disease. J Neurosci Res 84:1376–1384. doi:10.1002/jnr.21021

    Article  PubMed  CAS  Google Scholar 

  24. Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K et al (2008) Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21. doi:10.1186/1750-1326-3-21

    Article  PubMed  Google Scholar 

  25. Giordano S, Lee J, Darley-Usmar VM, Zhang J (2012) Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS ONE 7:e44610. doi:10.1371/journal.pone.0044610

    Article  PubMed  CAS  Google Scholar 

  26. Kitao Y, Matsuyama T, Takano K, Tabata Y, Yoshimoto T et al (2007) Does ORP150/HSP12A protect dopaminergic neurons against MPTP/MPP(+)-induced neurotoxicity? Antioxid Redox Signal 9:589–595. doi:10.1089/ars 2006.1518

    Article  PubMed  CAS  Google Scholar 

  27. Kyratzi E, Pavlaki M, Kontostavlaki D, Rideout HJ, Stefanis L (2007) Differential effects of Parkin and its mutants on protein aggregation, the ubiquitin-proteasome system, and neuronal cell death in human neuroblastoma cells. J Neurochem 102:1292–1303. doi:10.1111/j.1471-4159.2007.04620.x

    Article  PubMed  CAS  Google Scholar 

  28. Sung JY, Lee HJ, Jeong EI, Oh Y, Park J et al (2007) Alpha-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci Lett 416:289–293. doi:10.1016/j.neulet.2007.02.025

    Article  PubMed  CAS  Google Scholar 

  29. Fall CP, Bennett JP Jr (1999) Characterization and time course of MPP+ -induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 55:620–628

    Article  PubMed  CAS  Google Scholar 

  30. Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW et al (2001) H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276:29251–29256. doi:10.1074/jbc.M102124200

    Article  PubMed  CAS  Google Scholar 

  31. Mizutani H, Tada-Oikawa S, Hiraku Y, Oikawa S, Kojima M et al (2002) Mechanism of apoptosis induced by a new topoisomerase inhibitor through the generation of hydrogen peroxide. J Biol Chem 277:30684–30689. doi:10.1074/jbc.M204353200

    Article  PubMed  CAS  Google Scholar 

  32. Boveris A (1977) Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78:67–82

    Article  PubMed  CAS  Google Scholar 

  33. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed  CAS  Google Scholar 

  34. Tada-Oikawa S, Hiraku Y, Kawanishi M, Kawanishi S (2003) Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci 73:3277–3288

    Article  PubMed  CAS  Google Scholar 

  35. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    PubMed  CAS  Google Scholar 

  36. Asanuma M, Miyazaki I, Diaz-Corrales FJ, Miyoshi K, Ogawa N et al (2008) Preventing effects of a novel anti-parkinsonian agent zonisamide on dopamine quinone formation. Neurosci Res 60:106–113. doi:10.1016/j.neures.2007.10.002

    Article  PubMed  CAS  Google Scholar 

  37. Kawajiri S, Machida Y, Saiki S, Sato S, Hattori N (2010) Zonisamide reduces cell death in SH-SY5Y cells via an anti-apoptotic effect and by upregulating MnSOD. Neurosci Lett 481:88–91. doi:10.1016/j.neulet.2010.06.058

    Article  PubMed  CAS  Google Scholar 

  38. Yürekli VA, Gürler S, Nazıroğlu M, Uğuz AC, Koyuncuoğlu HR (2013) Zonisamide attenuates MPP+ -induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol Neurobiol 33:205–212. doi:10.1007/s10571-012-9886-3

    Article  PubMed  Google Scholar 

  39. Pena C, Zhou Y, Lust D, Pilar G (2001) Restoration of mitochondrial function reverses developmental neuronal death in vitro. J Comp Neurol 440:156–176

    Article  PubMed  CAS  Google Scholar 

  40. Orth M, Schapira AHV (2002) Mitochondrial involvement in Parkinson’s disease. Neurochem Int 40:533–541

    Article  PubMed  CAS  Google Scholar 

  41. Hu J-H, Zhu X-Z (2007) Rotenone-induced neurotoxicity of THP-1 cells requires production of reactive oxygen species and activation of phosphatidylinositol 3-kinase. Brain Res 1153:12–19. doi:10.1016/j.brainres.2007.03.006

    Article  PubMed  CAS  Google Scholar 

  42. Watabe M, Nakaki T (2007) Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 323:499–507. doi:10.1124/jpet.107.127597

    Article  PubMed  CAS  Google Scholar 

  43. Das A, McDowell M, O’Dell CM, Busch ME, Smith JA et al (2010) Post-treatment with voltage-gated Na(+) channel blocker attenuates kainic acid-induced apoptosis in rat primary hippocampal neurons. Neurochem Res 35:2175–2183. doi:10.1007/s11064-010-0321-1

    Article  PubMed  CAS  Google Scholar 

  44. Miwa H, Kondo T (2011) T-type calcium channel as a new therapeutic target for tremor. Cerebellum 10:563–569. doi:10.1007/s12311-011-0277-y

    Article  PubMed  CAS  Google Scholar 

  45. Willmore LJ (2005) Antiepileptic drugs and neuroprotection: current status and future roles. Epilepsy Behav 7(Suppl 3):S25–S28. doi:10.1016/j.yebeh.2005.08.006

    Article  PubMed  Google Scholar 

  46. Murata M (2010) Zonisamide: a new drug for Parkinson’s disease. Drugs Today 46:251–258. doi:10.1358/dot.2010.46.4.1490077

    Article  PubMed  Google Scholar 

  47. Rösler TW, Arias-Carrión O, Höglinger GU (2010) Zonisamide: aspects in neuroprotection. Exp Neurol 224:336–339. doi:10.1016/j.expneurol.2010.04.017

    Article  PubMed  Google Scholar 

  48. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219. doi:10.1016/j.tins.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  49. Di Filippo M, Picconi B, Costa C, Bagetta V, Tantucci M et al (2006) Pathways of neurodegeneration and experimental models of basal ganglia disorders: downstream effects of mitochondrial inhibition. Eur J Pharmacol 545:65–72. doi:10.1016/j.ejphar.2006.06.024

    Article  PubMed  Google Scholar 

  50. Yokoyama H, Yano R, Kuroiwa H, Tsukada T, Uchida H et al (2010) Therapeutic effect of a novel anti-parkinsonian agent zonisamide against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis 25:305–313. doi:10.1007/s11011-010-9212-z

    Article  PubMed  CAS  Google Scholar 

  51. Murata M, Horiuchi E, Kanazawa I (2001) Zonisamide has beneficial effects on Parkinson’s disease patients. Neurosci Res 41:397–399

    Article  PubMed  CAS  Google Scholar 

  52. Murata M, Hasegawa K, Kanazawa I, Japan Zonisamide on PD Study Group (2007) Zonisamide improves motor function in Parkinson disease: a randomized, double-blind study. Neurology 68:45–50. doi:10.1212/01.wnl.0000250236.75053.16

    Article  PubMed  CAS  Google Scholar 

  53. Bermejo PE, Ruiz-Huete C, Anciones B (2010) Zonisamide in managing impulse control disorders in Parkinson’s disease. J Neurol 257:1682–1685. doi:10.1007/s00415-010-5603-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research received no Grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest

The Authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Ientile.

Additional information

Salvatore Condello and Monica Currò have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condello, S., Currò, M., Ferlazzo, N. et al. Protective Effects of Zonisamide Against Rotenone-Induced Neurotoxicity. Neurochem Res 38, 2631–2639 (2013). https://doi.org/10.1007/s11064-013-1181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1181-2

Keywords

Navigation