Skip to main content

Advertisement

Log in

Effect of GABA Receptor Agonists or Antagonists Injected Spinally on the Blood Glucose Level in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1–10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1–10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1–5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5–10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen–induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davidoff RA (1985) Antispasticity drugs: mechanisms of action. Ann Neurol 17(2):107–116

    Article  PubMed  CAS  Google Scholar 

  2. Krantis A (2000) GABA in the mammalian enteric nervous system. News Physiol Sci 15:284–290

    PubMed  CAS  Google Scholar 

  3. Pinard A, Seddik R, Bettler B (2010) GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 58:231–255

    Article  PubMed  CAS  Google Scholar 

  4. Whiting PJ (2003) GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8(10):445–450

    Article  PubMed  CAS  Google Scholar 

  5. Feldman RG, Kelly-Hayes M, Conomy JP, Foley JM (1978) Baclofen for spasticity in multiple sclerosis. Double-blind crossover and 3-year study. Neurology 28(11):1094–1098

    Article  PubMed  CAS  Google Scholar 

  6. Lazorthes Y, Sallerin-Caute B, Verdie JC, Bastide R, Carillo JP (1990) Chronic intrathecal baclofen administration for control of severe spasticity. J Neurosurg 72(3):393–402

    Article  PubMed  CAS  Google Scholar 

  7. Kawai Unger RH (1983) Effects of gamma-aminobutyric acid on insulin, glucagon, and somatostatin release from isolated perfused dog pancreas. Endocrinology 113(1):111–113

    Article  PubMed  CAS  Google Scholar 

  8. Gilon P, Bertrand G, Loubatières-Mariani MM, Remacle C, Henquin JC (1991) The influence of gamma-aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129(5):2521–2529

    Article  PubMed  CAS  Google Scholar 

  9. Bonaventura MM, Catalano PN, Chamson-Reig A, Arany E, Hill D, Bettler B, Saravia F, Libertun C, Lux-Lantos VA (2008) GABAB receptors and glucose homeostasis: evaluation in GABAB receptor knockout mice. Am J Physiol Endocrinol Metab 294(1):E157–E167

    Article  PubMed  CAS  Google Scholar 

  10. Rorsman P, Berggren PO, Bokvist K, Ericson H, Möhler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341(6239):233–236

    Article  PubMed  CAS  Google Scholar 

  11. Nonogaki K, Iguchi A, Sakamoto N (1994) Bicuculline methiodide influences the central nervous system to produce hyperglycemia in rats. J Neuroendocrinol 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  12. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309:943–947

    Article  PubMed  CAS  Google Scholar 

  13. Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382

    Article  PubMed  CAS  Google Scholar 

  14. Fukushima M, Tokunaga K, Lupien J, Kemnitz JW, Bray GA (1987) Dynamic and static phases of obesity following lesions in PVN and VMH. Am J Physiol 253:R523–R529

    PubMed  CAS  Google Scholar 

  15. Berthoud HR, Jeanrenaud B (1979) Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105:146–151

    Article  PubMed  CAS  Google Scholar 

  16. Minokoshi Y, Okano Y, Shimazu T (1994) Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscle. Brain Res 649:343–347

    Article  PubMed  CAS  Google Scholar 

  17. Chan O, Zhu W, Ding Y, McCrimmon RJ, Sherwin RS (2006) Blockade of GABA (A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 55(4):1080–1087

    Article  PubMed  CAS  Google Scholar 

  18. Antony S, Kumar TP, Kuruvilla KP, George N, Paulose CS (2010) Decreased GABA receptor binding in the cerebral cortex of insulin induced hypoglycemic and streptozotocin induced diabetic rats. Neurochem Res 35(10):1516–1521

    Article  PubMed  CAS  Google Scholar 

  19. Hylden JL, Wilcox GL (1981) Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res 217:212–215

    Article  PubMed  CAS  Google Scholar 

  20. Defeudis FV (1981) Central GABA-ergic systems and feeding behavior. Neurochem Int 3(5):273–279

    Article  PubMed  CAS  Google Scholar 

  21. Kalsbeek A, Foppen E, Schalij I, Van Heijningen C, van der Vliet J, Fliers E, Buijs RM (2008) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 3(9):e3194

    Article  PubMed  Google Scholar 

  22. Kalsbeek A, La Fleur S, Van Heijningen C, Buijs RM (2004) Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci 24(35):7604–7613

    Article  PubMed  CAS  Google Scholar 

  23. Sherin A, Peeyush KT, Naijil G, Chinthu R, Paulose CS (2010) Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozotocin induced diabetic rats. Brain Res Bull 83(6):360–366

    Article  PubMed  CAS  Google Scholar 

  24. Wang XL, Zhang Q, Zhang YZ, Liu YT, Dong R, Wang QJ, Guo YX (2011) Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neurosci Lett 490(2):112–115

    Article  PubMed  CAS  Google Scholar 

  25. Morgado C, Pinto-Ribeiro F, Tavares I (2008) Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats. Neurosci Lett 438(1):102–106

    Article  PubMed  CAS  Google Scholar 

  26. Cavagnini F, Pinto M, Dubini A, Invitti C, Cappelletti G, Polli EE (1982) Effects of gamma aminobutyric acid (GABA) and muscimol on endocrine pancreatic function in man. Metabolism 31(1):73–77

    Article  PubMed  CAS  Google Scholar 

  27. Ozawa K, Miura H, Tamagawa T, Hiyoshi Y, Nonogaki K, Maeda N, Watanabe G, Sakamoto N, Iguchi A (1993) Intrahypothalamic, but not hippocampal, administration of muscimol suppresses hyperglycemia induced by hippocampal neostigmine in anesthetized rats. Life Sci 53(25):1903–1909

    Article  PubMed  CAS  Google Scholar 

  28. Lemus M, Montero S, Cadenas JL, Lara JJ, Tejeda-Chávez HR, Alvarez-Buylla R, de Alvarez-Buylla ER (2008) GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation. Auton Neurosci 141(1–2):73–82

    Article  PubMed  CAS  Google Scholar 

  29. Ulrich D, Bettler B (2007) GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17(3):298–303

    Article  PubMed  CAS  Google Scholar 

  30. Ortega A (2003) A new role for GABA: inhibition of tumor cell migration. Trends Pharmacol Sci 24(4):151–154

    Article  PubMed  CAS  Google Scholar 

  31. Harrington MA, Oksenberg D, Peroutka SJ (1988) 5-Hydroxytryptamine1A receptors are linked to a Gi-adenylate cyclase complex in rat hippocampus. Eur J Pharmacol 154(1):95–98

    Article  PubMed  CAS  Google Scholar 

  32. García Hermida O, Fontela T, Ghiglione M, Uttenthal LO (1991) Effect of pertussis pretreatment on plasma glucose and insulin responses to lithium in rats. Br J Pharmacol 103(2):1309–1312

    Article  PubMed  Google Scholar 

  33. Toyota T, Kai Y, Kakizaki M, Sakai A, Goto Y, Yajima M, Ui M (1980) Effects of islet-activating protein (IAP) on blood glucose and plasma insulin in healthy volunteers (phase 1 studies). Tohoku J Exp Med 130(2):105–116

    Article  PubMed  CAS  Google Scholar 

  34. Komatsu M, McDermott AM, Gillison SL, Sharp GW (1995) Time course of action of pertussis toxin to block the inhibition of stimulated insulin release by norepinephrine. Endocrinology 136(5):1857–1863

    Article  PubMed  CAS  Google Scholar 

  35. Sim YB, Park SH, Kang YJ, Jung JS, Ryu OH, Choi MG, Suh HW (2012) Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of sympathetic nervous system. Pharmacol Biochem Behav 102(1):170–176

    Article  PubMed  CAS  Google Scholar 

  36. Sim YB, Park SH, Kang YJ, Jung JS, Ryu OH, Choi MG, Suh HW (2012) Various pain stimulations cause an increase of the blood glucose level. Animal Cells Syst 16(5):385–390

    Article  CAS  Google Scholar 

  37. Sim YB, Park SH, Kang YJ, Kim SS, Kim CH, Kim SJ, Jung JS, Ryu OH, Choi MG, Suh HW (2012) Central anti-diabetic action of biguanide and thizolidinediones in d-glucose fed and streptozotocin-treated mouse models. Neurosci Lett 528(1):73–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Priority Research Centers (2012-R1A6A1048184) and Basic Science Research (2012-0001569) Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology and Hallym University Research Fund, 2012 (HRF-S-2012-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Won Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sim, YB., Park, SH., Kang, YJ. et al. Effect of GABA Receptor Agonists or Antagonists Injected Spinally on the Blood Glucose Level in Mice. Neurochem Res 38, 1055–1062 (2013). https://doi.org/10.1007/s11064-013-1016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1016-1

Keywords

Navigation