Skip to main content

Advertisement

Log in

Chemokine Fractalkine Attenuates Overactivation and Apoptosis of BV-2 Microglial Cells Induced by Extracellular ATP

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The “microglial dysfunction hypothesis” of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  2. Garden GA, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharm 1:127–137

    Article  Google Scholar 

  3. Kim WK, Hwang SY, Oh ES, Piao HZ, Kim KW et al (2004) TGF-beta 1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol 172:7015–7023

    PubMed  CAS  Google Scholar 

  4. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  PubMed  CAS  Google Scholar 

  5. Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukocyte Biol 85:352–370

    Article  PubMed  CAS  Google Scholar 

  6. Monk PN, Shaw PJ (2006) ALS: life and death in a bad neighborhood. Nat Med 12:885–887

    Article  PubMed  CAS  Google Scholar 

  7. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  PubMed  CAS  Google Scholar 

  8. Liu B, Wang K, Gao HM, Mandavilli B, Wang JY et al (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77:182–189

    Article  PubMed  CAS  Google Scholar 

  9. Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92:293–315

    Article  PubMed  Google Scholar 

  10. Liang J, Takeuchi H, Jin S, Noda M, Li H et al (2010) Glutamate induces neurotrophic factor production from microglia via protein kinase C pathway. Brain Res 1322:8–23

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953

    Article  PubMed  CAS  Google Scholar 

  12. Matute C, Alberdi E, Domercq M, Sánchez-Gómez M-V, Pérez-Samartín A et al (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  PubMed  CAS  Google Scholar 

  13. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  14. Delarasse C, Gonnord P, Galante M, Auger R, Daniel H et al (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846–857

    Article  PubMed  CAS  Google Scholar 

  15. Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219:53–64

    Article  PubMed  CAS  Google Scholar 

  16. Farber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch 452:615–621

    Article  PubMed  Google Scholar 

  17. Re DB, Przedborski S (2006) Fractalkine: moving from chemotaxis to neuroprotection. Nat Neurosci 9:859–861

    Article  PubMed  Google Scholar 

  18. Cipriani R, Villa P, Chece G, Lauro C, Paladini A et al (2011) CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 31:16327–16335

    Article  PubMed  CAS  Google Scholar 

  19. Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflamm 8:9

    Article  CAS  Google Scholar 

  20. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250

    Article  PubMed  CAS  Google Scholar 

  21. Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13:411–413

    Article  PubMed  CAS  Google Scholar 

  22. Mizuno T, Kawanokuchi J, Numata K, Suzumura A (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979:65–70

    Article  Google Scholar 

  23. Lauro C, Di Angelantonio S, Cipriani R, Sobrero F, Antonilli L et al (2008) Activity of adenosine receptors type 1 is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol 180:7590–7596

    PubMed  CAS  Google Scholar 

  24. Limatola C, Lauro C, Catalano M, Ciotti MT, Bertollini C et al (2005) Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J Neuroimmunol 166:19–28

    Article  PubMed  CAS  Google Scholar 

  25. Deiva K, Geeraerts T, Salim H, Leclerc P, Hery C et al (2004) Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 20:3222–3232

    Article  PubMed  Google Scholar 

  26. Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ (2000) The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 165:397–403

    PubMed  CAS  Google Scholar 

  27. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  PubMed  CAS  Google Scholar 

  28. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R et al (2012) Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Delta9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol 165:2512–2528

    Article  PubMed  CAS  Google Scholar 

  29. Lee P, Hur J, Lee J, Kim J, Jeong J et al (2006) 15,16-dihydrotanshinone I suppresses the activation of BV-2 cell, a murine microglia cell line, by lipopolysaccharide. Neurochem Int 48:60–66

    Article  PubMed  CAS  Google Scholar 

  30. Lee JA, Song HY, Ju SM, Lee SJ, Seo WY et al (2010) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 by cell-permeable superoxide dismutase in lipopolysaccharide- stimulated BV-2 microglial cells. Mol Cells 29:245–250

    Article  PubMed  CAS  Google Scholar 

  31. Shen S, Yu S, Binek J, Chalimoniuk M, Zhang X et al (2005) Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int 47:298–307

    Article  PubMed  CAS  Google Scholar 

  32. Lee S, Lee J, Kim S, Park JY, Lee WH et al (2007) A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol 179:3231–3241

    PubMed  CAS  Google Scholar 

  33. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S et al (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78:1339–1349

    Article  PubMed  CAS  Google Scholar 

  34. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  35. Xiang Z, Chen M, Ping J, Dunn P, Lv J et al (2006) Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J Neurosci Res 83:91–101

    Article  PubMed  CAS  Google Scholar 

  36. Choi DK, Koppula S, Suk K (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16:1021–1043

    Article  PubMed  CAS  Google Scholar 

  37. Hu X, Zhou H, Zhang D, Yang S, Qian L et al (2012) Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J Neuroimmune Pharm 7:187–201

    Article  Google Scholar 

  38. Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315

    Article  PubMed  CAS  Google Scholar 

  39. Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y et al (2011) Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286:2308–2319

    Article  PubMed  CAS  Google Scholar 

  40. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  PubMed  CAS  Google Scholar 

  41. Vinet J, van Weering HR, Heinrich A, Kalin RE, Wegner A et al (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflamm 9:27

    Article  CAS  Google Scholar 

  42. Lyons A, Lynch AM, Downer EJ, Hanley R, O’Sullivan JB et al (2009) Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J Neurochem 110:1547–1556

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Science Foundation of Liaoning Province, China (No. 201202050). Authors are grateful to Dr. Ying Zhao for technical expertise and Prof. Qigui Liu, a statistical expert, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ping Li.

Additional information

Fei Hao and Nan-Nan Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, F., Zhang, NN., Zhang, DM. et al. Chemokine Fractalkine Attenuates Overactivation and Apoptosis of BV-2 Microglial Cells Induced by Extracellular ATP. Neurochem Res 38, 1002–1012 (2013). https://doi.org/10.1007/s11064-013-1010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1010-7

Keywords

Navigation