Skip to main content

Advertisement

Log in

Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Early Beneficial Effects

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hyperbilirubinemia remains one of the most frequent clinical diagnoses in the neonatal period. This condition may lead to the deposition of unconjugated bilirubin (UCB) in the central nervous system, causing nerve cell damage by molecular and cellular mechanisms that are still being clarified. To date, all the studies regarding bilirubin-induced neurological dysfunction were performed in monotypic nerve cell cultures. The use of co-cultures, where astrocyte-containing culture inserts are placed on the top of neuron cultures, provides the means to directly evaluate the cross-talk between these two different cell types. Therefore, this study was designed to evaluate whether protective or detrimental effects are produced by astrocytes over UCB-induced neurodegeneration. Our experimental model used an indirect co-culture system where neuron-to-astrocyte signaling was established concomitantly with the 24 h exposure to UCB. In this model astrocytes abrogated the well-known UCB-induced neurotoxic effects by preventing the loss of cell viability, dysfunction and death by apoptosis, as well as the impairment of neuritic outgrowth. To this protection it may have accounted the induced expression of the multidrug resistance-associated protein 1 and the 3.5-fold increase in the values of S100B, when communication between both cells was established independently of UCB presence. In addition, the presence of astrocytes in the neuronal environment preserved the UCB-induced increase in glutamate levels, but raised the basal concentrations of nitric oxide and TNF-α although no UCB effects were noticed. Our data suggest that bidirectional signalling during astrocyte-neuron recognition exerts pro-survival effects, stimulates neuritogenesis and sustains neuronal homeostasis, thus protecting cells from the immediate UCB injury. These findings may help explain why irreversible brain damage usually develops only after the first day of post-natal life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702–2720

    Article  PubMed  CAS  Google Scholar 

  2. Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399

    Article  PubMed  CAS  Google Scholar 

  3. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  4. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  Google Scholar 

  5. Renault-Mihara F, Okada S, Shibata S, Nakamura M, Toyama Y, Okano H (2008) Spinal cord injury: emerging beneficial role of reactive astrocytes’ migration. Int J Biochem Cell Biol 40:1649–1653

    Article  PubMed  CAS  Google Scholar 

  6. Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, Seidenbecher C (2010) Contributions of astrocytes to synapse formation and maturation - Potential functions of the perisynaptic extracellular matrix. Brain Res Rev 63:26–38

    Article  PubMed  CAS  Google Scholar 

  7. Laird MD, Vender JR, Dhandapani KM (2008) Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals 16:154–164

    Article  PubMed  CAS  Google Scholar 

  8. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87

    Article  PubMed  CAS  Google Scholar 

  9. Yang CZ, Zhao R, Dong Y, Chen XQ, Yu AC (2008) Astrocyte and neuron intone through glutamate. Neurochem Res 33:2480–2486

    Article  PubMed  CAS  Google Scholar 

  10. Silva SL, Vaz AR, Diógenes MJ, van Rooijen N, Sebastião AM, Fernandes A, Silva RFM, Brites D (2012) Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 62:2398–2408

    Article  PubMed  CAS  Google Scholar 

  11. Brites D (2011) Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Semin Perinatol 35:114–120

    Article  PubMed  Google Scholar 

  12. Shapiro SM (2010) Chronic bilirubin encephalopathy: diagnosis and outcome. Semin Fetal Neonatal Med 15:157–163

    Article  PubMed  Google Scholar 

  13. Falcão AS, Silva RFM, Pancadas S, Fernandes A, Brito MA, Brites D (2007) Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res 85:1229–1239

    Article  PubMed  Google Scholar 

  14. Fernandes A, Falcão AS, Abranches E, Bekman E, Henrique D, Lanier LM, Brites D (2009) Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Dev Neurobiol 69:568–582

    Article  PubMed  CAS  Google Scholar 

  15. Rodrigues CMP, Solá S, Brites D (2002) Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology 35:1186–1195

    Article  PubMed  CAS  Google Scholar 

  16. Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2005) Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiol Dis 20:199–206

    Article  PubMed  Google Scholar 

  17. Fernandes A, Brites D (2009) Contribution of inflammatory processes to nerve cell toxicity by bilirubin and efficacy of potential therapeutic agents. Curr Pharm Des 15:2915–2926

    Article  PubMed  CAS  Google Scholar 

  18. Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2006) Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol 112:95–105

    Article  PubMed  Google Scholar 

  19. Fernandes A, Falcão AS, Silva RFM, Gordo AC, Gama MJ, Brito MA, Brites D (2006) Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J Neurochem 96:1667–1679

    Article  PubMed  CAS  Google Scholar 

  20. Rigato I, Pascolo L, Fernetti C, Ostrow JD, Tiribelli C (2004) The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem J 383:335–341

    Article  PubMed  CAS  Google Scholar 

  21. Calligaris S, Cekic D, Roca-Burgos L, Gerin F, Mazzone G, Ostrow JD, Tiribelli C (2006) Multidrug resistance associated protein 1 protects against bilirubin-induced cytotoxicity. FEBS Lett 580:1355–1359

    Article  PubMed  CAS  Google Scholar 

  22. Falcão AS, Bellarosa C, Fernandes A, Brito MA, Silva RFM, Tiribelli C, Brites D (2007) Role of multidrug resistance-associated protein 1 expression in the in vitro susceptibility of rat nerve cell to unconjugated bilirubin. Neuroscience 144:878–888

    Article  PubMed  Google Scholar 

  23. McDonagh AF (1979) Bile pigments: bilatrienes and 5,15 biladienes. In: Dolphin D (ed) The Porphyrins. Academic Press, New York, pp 294–491

    Google Scholar 

  24. Ahlfors CE, Herbsman O (2003) Unbound bilirubin in a term newborn with kernicterus. Pediatrics 111:1110–1112

    Article  PubMed  Google Scholar 

  25. Silva RFM, Rodrigues CMP, Brites D (2002) Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr Res 51:535–541

    Article  PubMed  CAS  Google Scholar 

  26. Blondeau JP, Beslin A, Chantoux F, Francon J (1993) Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J Neurochem 60:1407–1413

    Article  PubMed  CAS  Google Scholar 

  27. Silva R, Mata LR, Gulbenkian S, Brito MA, Tiribelli C, Brites D (1999) Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem Biophys Res Commun 265:67–72

    Article  PubMed  CAS  Google Scholar 

  28. Hansen TWR (2000) Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics 106:E15

    Article  PubMed  CAS  Google Scholar 

  29. Hansen TWR (1995) Acute entry of bilirubin into rat brain regions. Biol Neonate 67:203–207

    Article  PubMed  CAS  Google Scholar 

  30. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob FW, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  31. Brito MA, Rosa AI, Falcão AS, Fernandes A, Silva RFM, Butterfield DA, Brites D (2008) Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells. Neurobiol Dis 29:30–40

    Article  PubMed  CAS  Google Scholar 

  32. Vaz AR, Delgado-Esteban M, Brito MA, Bolaños JP, Brites D, Almeida A (2010) Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. J Neurochem 112:56–65

    Article  PubMed  CAS  Google Scholar 

  33. Weisiger RA, Ostrow JD, Koehler RK, Webster CC, Mukerjee P, Pascolo L, Tiribelli C (2001) Affinity of human serum albumin for bilirubin varies with albumin concentration and buffer composition: results of a novel ultrafiltration method. J Biol Chem 276:29953–29960

    Article  PubMed  CAS  Google Scholar 

  34. Palmela I, Sasaki H, Cardoso FL, Moutinho M, Kim KS, Brites D, Brito MA (2012) Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood-brain barrier lining. Front Cell Neurosci 6:22

    Article  PubMed  CAS  Google Scholar 

  35. Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C (2009) Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem 55:1288–1299

    Article  PubMed  CAS  Google Scholar 

  36. Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2010) Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol Dis 40:663–675

    Article  PubMed  CAS  Google Scholar 

  37. Silva MF, Ruiter JP, Illst L, Jakobs C, Duran M, de Almeida IT, Wanders RJ (1997) Valproate inhibits the mitochondrial pyruvate-driven oxidative phosphorylation in vitro. J Inherit Metab Dis 20:397–400

    Article  PubMed  CAS  Google Scholar 

  38. Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Goncalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99

    Article  PubMed  CAS  Google Scholar 

  39. Cekic D, Bellarosa C, Garcia-Mediavilla MV, Rigato I, Pascolo L, Ostrow JD, Tiribelli C (2003) Upregulation in the expression of multidrug resistance protein Mrp1 mRNA and protein by increased bilirubin production in rat. Biochem Biophys Res Commun 311:891–896

    Article  PubMed  CAS  Google Scholar 

  40. Zou J, Wang YX, Dou FF, Lu HZ, Ma ZW, Lu PH, Xu XM (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56:577–584

    Article  PubMed  CAS  Google Scholar 

  41. Struzynska L (2009) A glutamatergic component of lead toxicity in adult brain: the role of astrocytic glutamate transporters. Neurochem Int 55:151–156

    Article  PubMed  CAS  Google Scholar 

  42. Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, Tieu K, Nedergaard M (2012) Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci USA 109:6265–6270

    Article  PubMed  CAS  Google Scholar 

  43. Hu J, Castets F, Guevara JL, Van Eldik LJ (1996) S100 beta stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes. J Biol Chem 271:2543–2547

    Article  PubMed  CAS  Google Scholar 

  44. Lam AG, Koppal T, Akama KT, Guo L, Craft JM, Samy B, Schavocky JP, Watterson DM, Van Eldik LJ (2001) Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging 22:765–772

    Article  PubMed  CAS  Google Scholar 

  45. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022

    Article  PubMed  CAS  Google Scholar 

  46. Donato R (2007) RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med 7:711–724

    Article  PubMed  CAS  Google Scholar 

  47. Edwards MM, Robinson SR (2006) TNF alpha affects the expression of GFAP and S100B: implications for Alzheimer’s disease. J Neural Transm 113:1709–1715

    Article  PubMed  CAS  Google Scholar 

  48. Brites D, Brito MA (2012) Bilirubin toxicity. In: Stevenson DK, Maisels MJ, Watchko JF (eds) Neonatal jaundice. Mc-Graw-Hill Companies, Inc., New York, pp 115–143

    Google Scholar 

  49. Brites D (2012) The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 3:88

    Article  PubMed  Google Scholar 

  50. Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29:361–376

    Article  PubMed  CAS  Google Scholar 

  51. Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JA (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS One 6:e29445

    Article  PubMed  CAS  Google Scholar 

  52. Amiri M, Bahrami F, Janahmadi M (2012) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70

    Article  PubMed  Google Scholar 

  53. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71:107–113

    Article  PubMed  Google Scholar 

  54. Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    Article  PubMed  CAS  Google Scholar 

  55. Sauvageot CM, Stiles CD (2002) Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244–249

    Article  PubMed  CAS  Google Scholar 

  56. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    Article  PubMed  CAS  Google Scholar 

  57. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  PubMed  CAS  Google Scholar 

  58. Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46

    Article  PubMed  CAS  Google Scholar 

  59. Dowell JA, Johnson JA, Li L (2009) Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res 8:4135–4143

    Article  PubMed  CAS  Google Scholar 

  60. Au E, Richter MW, Vincent AJ, Tetzlaff W, Aebersold R, Sage EH, Roskams AJ (2007) SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci 27:7208–7221

    Article  PubMed  CAS  Google Scholar 

  61. Lamarche F, Signorini-Allibe N, Gonthier B, Barret L (2004) Influence of vitamin E, sodium selenite, and astrocyte-conditioned medium on neuronal survival after chronic exposure to ethanol. Alcohol 33:127–138

    PubMed  CAS  Google Scholar 

  62. Watts LT, Rathinam ML, Schenker S, Henderson GI (2005) Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J Neurosci Res 80:655–666

    Article  PubMed  CAS  Google Scholar 

  63. Yanni PA, Rising LJ, Ingraham CA, Lindsley TA (2002) Astrocyte-derived factors modulate the inhibitory effect of ethanol on dendritic development. Glia 38:292–302

    Article  PubMed  Google Scholar 

  64. Rao KV, Panickar KS, Jayakumar AR, Norenberg MD (2005) Astrocytes protect neurons from ammonia toxicity. Neurochem Res 30:1311–1318

    Article  PubMed  CAS  Google Scholar 

  65. Giordano G, Kavanagh TJ, Costa LG (2009) Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the polybrominated diphenyl ether (PBDE) mixture DE-71. Neurotoxicology 30:326–329

    Article  PubMed  CAS  Google Scholar 

  66. Paradisi S, Sacchetti B, Balduzzi M, Gaudi S, Malchiodi-Albedi F (2004) Astrocyte modulation of in vitro b-amyloid neurotoxicity. Glia 46:252–260

    Article  PubMed  Google Scholar 

  67. Slezak M, Pfrieger FW, Soltys Z (2006) Synaptic plasticity, astrocytes and morphological homeostasis. J Physiol Paris 99:84–91

    Article  PubMed  CAS  Google Scholar 

  68. Scheiber IF, Dringen R (2011) Copper-treatment increases the cellular GSH content and accelerates GSH export from cultured rat astrocytes. Neurosci Lett 498:42–46

    Article  PubMed  CAS  Google Scholar 

  69. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  PubMed  CAS  Google Scholar 

  70. Brito MA, Zurolo E, Pereira P, Barroso C, Aronica E, Brites D (2012) Cerebellar axon/myelin loss, angiogenic sprouting, and neuronal increase of vascular endothelial growth factor in a preterm infant with kernicterus. J Child Neurol 27:615–624

    Article  PubMed  Google Scholar 

  71. Ostrow JD, Pascolo L, Brites D, Tiribelli C (2004) Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med 10:65–70

    Article  PubMed  CAS  Google Scholar 

  72. Gazzin S, Berengeno AL, Strazielle N, Fazzari F, Raseni A, Ostrow JD, Wennberg R, Ghersi-Egea JF, Tiribelli C (2011) Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One 6:e16165

    Article  PubMed  CAS  Google Scholar 

  73. Schousboe A, Sickmann HM, Bak LK, Schousboe I, Jajo FS, Faek SA, Waagepetersen HS (2011) Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source. J Neurosci Res 89:1926–1934

    Article  PubMed  CAS  Google Scholar 

  74. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  PubMed  CAS  Google Scholar 

  75. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    Article  PubMed  Google Scholar 

  76. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    Article  PubMed  CAS  Google Scholar 

  77. Vaz AR, Silva SL, Barateiro A, Fernandes A, Falcão AS, Brito MA, Brites D (2011) Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Exp Neurol 229:381–390

    Article  PubMed  CAS  Google Scholar 

  78. Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610

    Article  PubMed  CAS  Google Scholar 

  79. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    PubMed  CAS  Google Scholar 

  80. Haskew-Layton RE, Payappilly JB, Smirnova NA, Ma TC, Chan KK, Murphy TH, Guo H, Langley B, Sultana R, Butterfield DA, Santagata S, Alldred MJ, Gazaryan IG, Bell GW, Ginsberg SD, Ratan RR (2010) Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci USA 107:17385–17390

    Article  PubMed  CAS  Google Scholar 

  81. Lucius R, Sievers J (1996) Postnatal retinal ganglion cells in vitro: protection against reactive oxygen species (ROS)-induced axonal degeneration by cocultured astrocytes. Brain Res 743:56–62

    Article  PubMed  CAS  Google Scholar 

  82. Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    Article  PubMed  CAS  Google Scholar 

  83. Tobinick E (2009) Tumour necrosis factor modulation for treatment of Alzheimer’s disease: rationale and current evidence. CNS Drugs 23:713–725

    Article  PubMed  CAS  Google Scholar 

  84. Okumus N, Turkyilmaz C, Onal EE, Atalay Y, Serdaroglu A, Elbeg S, Koc E, Deda G, Cansu A, Gunduz B (2008) Tau and S100B proteins as biochemical markers of bilirubin-induced neurotoxicity in term neonates. Pediatr Neurol 39:245–252

    Article  PubMed  Google Scholar 

  85. Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D (2012) The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 120:644–659

    Article  PubMed  CAS  Google Scholar 

  86. Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ (2011) S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-kappaB signaling. J Neurochem 117:321–332

    Article  PubMed  CAS  Google Scholar 

  87. Adami C, Bianchi R, Pula G, Donato R (2004) S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochim Biophys Acta 1742:169–177

    Article  PubMed  CAS  Google Scholar 

  88. Li Y, Barger SW, Liu L, Mrak RE, Griffin WS (2000) S100β induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem 74:143–150

    PubMed  CAS  Google Scholar 

  89. Ahlemeyer B, Beier H, Semkova I, Schaper C, Krieglstein J (2000) S-100beta protects cultured neurons against glutamate- and staurosporine-induced damage and is involved in the antiapoptotic action of the 5 HT(1A)-receptor agonist, Bay x 3702. Brain Res 858:121–128

    Article  PubMed  CAS  Google Scholar 

  90. Eriksen JL, Druse MJ (2001) Astrocyte-mediated trophic support of developing serotonin neurons: effects of ethanol, buspirone, and S100B. Brain Res Dev Brain Res 131:9–15

    Article  PubMed  CAS  Google Scholar 

  91. Mendes-de-Aguiar CB, Alchini R, Zucco JK, Costa-Silva B, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG (2010) Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro. J Neurosci Res 88:3350–3360

    Article  PubMed  CAS  Google Scholar 

  92. Domenici MR, Paradisi S, Sacchetti B, Gaudi S, Balduzzi M, Bernardo A, Ajmone-Cat MA, Minghetti L, Malchiodi-Albedi F (2002) The presence of astrocytes enhances beta amyloid-induced neurotoxicity in hippocampal cell cultures. J Physiol Paris 96:313–316

    Article  PubMed  CAS  Google Scholar 

  93. Malchiodi-Albedi F, Domenici MR, Paradisi S, Bernardo A, Ajmone-Cat MA, Minghetti L (2001) Astrocytes contribute to neuronal impairment in βA toxicity increasing apoptosis in rat hippocampal neurons. Glia 34:68–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Claudio Tiribelli, Centro Studio Fegato, Trieste, Italy, for the gift of Mrp1-A23 antibody. This work was supported by the strategic project PEst-OE/SAU/UI4013/2011 and the PTDC/SAU-NEU/64385/2006 grants from Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal (to D. B.). A.S.F. was recipient of a Postdoctoral fellowship (FCT SFRH/BPD/26381/2006) from FCT. The funding organization had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Brites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcão, A.S., Silva, R.F.M., Vaz, A.R. et al. Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Early Beneficial Effects. Neurochem Res 38, 644–659 (2013). https://doi.org/10.1007/s11064-012-0963-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0963-2

Keywords

Navigation