Skip to main content
Log in

Comparison and Effects of Acute Lamotrigine Treatment on Extracellular Excitatory Amino Acids in the Hippocampus of PTZ-Kindled Epileptic and PTZ-Induced Status Epilepticus Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this communication, the effect of acute treatment with lamotrigine (LTG) was investigated on release of main excitatory amino acids (EAA) such as glutamate (Glu) and aspartate (Asp) in the hippocampus of pentylenetetrazol (PTZ)-induced and PTZ-kindled freely moving rats using micro dialysis. The results show that, levels of Glu and Asp significantly increased in the rat hippocampus during the seizure/interical periods for PTZ-status epilepticus (SE) and PTZ-kindled epileptic (EP) rats. The levels of Glu and Asp increased more in EP rat hippocampus than in SE rat hippocampus. After administration of 20 mg/kg LTG, the levels of Glu and Asp significantly decreased in the SE and EP rat hippocampus. The results indicate that: (a) excitability of the PTZ-kindled epileptogenic model is higher than that of the status epilepticus model; (b) the modulation of LTG on the EAA neurotransmitters certainly plays an important role in antiepileptic efficacy, especially in PTZ-kindled epileptic model where the release of EAA was influenced more markedly by acute application of 20 mg/kg LTG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bazil CW (2002) New antiepileptic drugs. Neurol 8:71–81

    Article  Google Scholar 

  2. Kwan P, Sills GJ, Brodie MJ (2001) The mechanism of action of commonly used antiepileptic drugs. Pharmacol Ther 90:21–34

    Article  PubMed  CAS  Google Scholar 

  3. Ferrie CD, Panayiotopoulos CP (1994) Therapeutic interaction of lamotrigine and sodium valproate in intractable myoclonic epilepsy. Seizure 3:157–159

    Article  PubMed  CAS  Google Scholar 

  4. Ferrie CD, Robinson RO, Knott C, Panayiotopoulos CP (1995) Lamotrigine as an add-on drug in typical absence seizures. Acta Neurol Scand 91:200–202

    Article  PubMed  CAS  Google Scholar 

  5. Pisani F, Oteri G, Russo MF, Di Perri R, Perucca E, Richens A (1999) The efficacy of valproate lamotrigine comedication in refactory complex partial seizures: evidence for a pharmacodynamic interaction. Epilepsia 40:1141–1146

    Article  PubMed  CAS  Google Scholar 

  6. Hwang H, Kim H, Kim SH, Kim SH, Lim BC, Chae JH, Choi JE, Kim KJ, Hwang YS (2012) Long-term effectiveness of ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. Brain Dev 34:344–348

    Article  PubMed  Google Scholar 

  7. Arban R, Maraia G, Brackenborough K, Winyard L, Wilson A, Gerrard P, Large C (2005) Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res 158:123–132

    Article  PubMed  CAS  Google Scholar 

  8. Coderre TJ, Kumar N, Lefebvre CD, Yu JSC (2007) A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain. J Neurochem 100:1289–1299

    Article  PubMed  CAS  Google Scholar 

  9. Lee HJ, Ertley RN, Rapoport SI, Bazinet RP, Rao JS (2008) Chronic administration of lamotrigine downregulates COX-2 mRNA and protein in rat frontal cortex. Neurochem Res 33:861–866

    Article  PubMed  Google Scholar 

  10. Chang YYC, Rapoport SI, Rao JS (2009) Chronic administration of mood stabilizers upregulates BDNF and Bcl-2 expression levels in rat frontal cortex. Neurochem Res 34:536–541

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham MO, Jones RSG (2000) The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vivo. Neuropharmacol 39:2139–2141

    Article  CAS  Google Scholar 

  12. Cunninham MO, Dhillon A, Wood SJ, Jones RS (2000) Reciprocal modulation of glutamate and GABA release may underlie the anticonvulsant effect of phenytoin. Neurosci 95:343–351

    Article  Google Scholar 

  13. Shuaib A, Mahmood RH, Wishart T, Kanthan R, Murabit MA, Ijas S, Miyashita H, Howlett W (1995) Neuroprotective effects of lamotrigine in global ischaemia in gerbils. A histological in vivo microdialysis and behavioural study. Brain Res 702:199–206

    Article  PubMed  CAS  Google Scholar 

  14. Bacher A, Zornow MH (1997) Lamotrigine inhibits extracellular glutamate accumulation during transient global ischaemia in rabbits. Anaesthesiol 86:459–463

    Article  CAS  Google Scholar 

  15. Ahmad S, Fowler LJ, Whitton PS (2004) Effects of acute and chronic lamotrigine treatment on basal and stimulated extracellular amino acids in the hippocampus of freely moving rats. Brain Res 1029:41–47

    Article  PubMed  CAS  Google Scholar 

  16. Paraskevas GP, Triantafyllou NI, Kapaki E, Limpitaki G, Petropoulou O, Vassilopoulos D (2006) Add-on lamotrigine treatment and plasma glutamate levels in epilepsy: relation to treatment response. Epilepsy Res 70:184–189

    Article  PubMed  CAS  Google Scholar 

  17. Eriksson A-S, O’Connor WT (1999) Analysis of CSF amino acids in young patients with generalized refractory epilepsy during an add-on study with lamotrigine. Epilepsy Res 34:75–83

    Article  PubMed  CAS  Google Scholar 

  18. Tomczyk T, Haberek G, Zuchora B, Jaroslawska-Zych A, Kowalczyk MS, Wielosz M, Urbanska EM (2007) Enhanced glutamatergic transmission reduces the anticonvulsant potential of lamotrigine but not of felbamate against tonic-clonic seizures. Pharmacological Repor 59:462–466

    CAS  Google Scholar 

  19. Lee C-Y, Fu W-M, Chen C–C, Su M-J, Liou H–H (2008) Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 49(5):888–897

    Article  PubMed  CAS  Google Scholar 

  20. Doi T, Ueda Y, Nagatomo K, Willmore LJ (2009) Role of glutamate and GABA transportersin development of pentylenetetrazol-kindling. Neurochem Res 34:1324–1331

    Article  PubMed  CAS  Google Scholar 

  21. Hussenet F, Boyet S, Nehlig A (1995) Long-term metabolic effects of pentylenetetrazol -induced status epilepticus in the immature rat. Neuroscience 67(2):455–461

    Article  PubMed  CAS  Google Scholar 

  22. Li Z-P, Zhang X-Y, Lu X, Zhong M-K, Ji Y-H (2004) Dynamic release of amino acid transmitters induced by valproate in PTZ-kindled epileptic rat hippocampus. Neurochem Int 44:263–270

    Article  PubMed  CAS  Google Scholar 

  23. Sherwin A, Robitaille Y, Quesney F, Olivier A, Leblanc R, Feindel W, Andermann E, Gotman J, Andermann F (1988) Exicitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 38:920–923

    Article  PubMed  CAS  Google Scholar 

  24. Janhua NA, Itano T, Kugoh T, Hosokawa K, Nakano M, Matsui H, Hatase O (1992) Familial increase in plasma glutamic aid in epilepsy. Epilepsy Res 11:37–44

    Article  Google Scholar 

  25. Wilson CL, Maidment NT, Ohomer MH, Behnke EJ, Ackerson L, Fried I, Engel J Jr (1996) Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainite rat model of hippocampal epilepsy. Epilepsy Res 265:245–254

    Article  Google Scholar 

  26. Schroder H, Becker A (1996) The role of glutamate receptors in pentylenetetrazole kindling of rats-a neurochemical study. Neuropharmacology 35:A28

    Article  Google Scholar 

  27. Schroder H, Becker A, Loβner B (1993) Glutamate binding to brain membrane is increased in pentylenetetrazole-kindled rats. J Neurochem 60:1007–1011

    Article  PubMed  CAS  Google Scholar 

  28. Schroder H, Becher A, Schroder V, Hollt V (1999) 3H-L-glutamate binding and K+-stimulated 3H-D-aspartate release from hippocampal tissue during the development of pentylenetetrazol kindling in rats. Pharmacol Biochem Behav 62:349–352

    Article  Google Scholar 

  29. Ekonomou A, Angelatou F (1999) Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced “kindling” model of epilepsy. Neurochem Res 24:1515–1522

    Article  PubMed  CAS  Google Scholar 

  30. Hamberger A, Nystrom B, Larsson S, Silfvenius H, Nordborg C (1991) Amino acids in the neuronal microenvironment of focal human epileptic lesions. Epilepsy Res 9:32–43

    Article  PubMed  CAS  Google Scholar 

  31. Carlson H, Ronne-Engstrom E, Ungerstedt U, Hillered L (1992) Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett 140:30–32

    Article  PubMed  CAS  Google Scholar 

  32. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610A

    Article  PubMed  CAS  Google Scholar 

  33. Giorgi O, Orlandi M, Lecca D, Corda MG (1991) MK-801 prevents chemical kindling induced by pentylenetetrazol in rats. Eur J Pharmacol 193:363–635

    Article  PubMed  CAS  Google Scholar 

  34. Sayin U, Cengiz S, Altug T (1993) Vigabatrin as an anticonvulsant against pentylenetetrazole seizures. Pharmacol Res 28:325–331

    Article  PubMed  CAS  Google Scholar 

  35. da Silva LF, Pereira P, Elisabetsky E (1998) A neuropharmacological analysis of PTZ-induced kindling in mice. Gen Pharmac 31:47–50

    Article  Google Scholar 

  36. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  37. Chapman AG (2000) Glutamate and epilepsy. J Nutr 130:1043S–1045S

    Google Scholar 

  38. Chao X-D, Fei F, Fei Z (2010) The role of excitatory amino acid transporters in cerebral ischemia. Neurochem Res 35:1224–1230

    Article  PubMed  CAS  Google Scholar 

  39. White HS, Wolf HH, Woodhead JH, Kupferberg HJ (1998) The National Institutes of Health Anticonvulsant Drug Development Program: screening for efficacy. In: French J, Leppik I, Dichter MA (Eds.), Antiepileptic Drug Development. Advancesin Neurology vol. 76. Lip-pincott-Raven, Philadelphia, pp. 29–39

  40. Lees G, Leach MJ (1993) Studies on the mechanism of action of the novel anticonvulsant lamotrigine (Lamactil) using primary neurological cultures from rat cortex. Brain Res 612:190–199

    Article  PubMed  CAS  Google Scholar 

  41. Wang SJ, Sibra TS, Gean PW (2001) Lamotrigine inhibition of glutamate release from isolated cerebrocortical nerve terminals (synaptosomes) by suppression of voltage-activated calcium channel activity. Neuro Report 12:2255–2258

    CAS  Google Scholar 

  42. Das A, McDowell M, O’Dell MC, Busch ME, Smith JA, Ray SK, Banik NL (2010) Post-treatment with voltage-gated Na+ channel blocker attenuates kainic acid-induced apoptosis in rat primary hippocampal neurons. Neurochem Res 35:2175–2183

    Article  PubMed  CAS  Google Scholar 

  43. Waldmeier PC, Baumann PA, Wick P, Feldtrauer JJ, Stierlin C, Scmutz M (1995) Similar potency of carbamazepine, oxcarbazepine and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913

    Article  PubMed  CAS  Google Scholar 

  44. Afanas’ev I, Kudrin V, Rayevsky KS, Varga V, Saransaari P, Oja SS (1999) Lamotrigine and carbamazepine affect differentially the release of D-[3H]aspartate from mouse cerebral cortical slices. Neurochem Res 24:1153–1159

    Article  PubMed  Google Scholar 

  45. Zachar G, Wagner Z, Tabi T, Balint E, Szoko E, Csillag A (2012) Differential changes of extracellular aspartate and glutamate in the striatum of domestic chicken evoked by high potassium or distress: an in vivo microdialysis study. Neurochem Res 37:1730–1737

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese 973 Project (No. 2010CB933903), the Natural Science Foundation of China (NO. 60971045), Hunan Science and Technology Projects (NO. 2012SK3105), the Natural Science Foundation of Hunan Province, China (NO. 12JJ6060), the Research Foundation of Education Bureau of Hunan Province, China (NO. 11A030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nongyue He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Wang, M., Wang, W. et al. Comparison and Effects of Acute Lamotrigine Treatment on Extracellular Excitatory Amino Acids in the Hippocampus of PTZ-Kindled Epileptic and PTZ-Induced Status Epilepticus Rats. Neurochem Res 38, 504–511 (2013). https://doi.org/10.1007/s11064-012-0942-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0942-7

Keywords

Navigation