Skip to main content

Advertisement

Log in

Bog Bilberry Anthocyanin Extract Improves Motor Functional Recovery by Multifaceted Effects in Spinal Cord Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the therapeutic efficiency of bog bilberry anthocyanin extract (BBAE) treatment starting 1 d after spinal cord injury (SCI) in rats and to investigate the underlying mechanism. The BBAE contained cyanidin-3-glucoside, malvidin-3-galactoside and malvidin-3-glucoside. SCI models were induced using the weight-drop method in Sprague–Dawley rats and additionally with sham group (laminectomy only). The animals were divided into four groups: vehicle-treated group; 10 mg/kg BBAE-treated group; 20 mg/kg BBAE-treated group; sham group. BBAE-treated or vehicle-treated group was administered orally at one day after SCI and then daily for 8 weeks. Locomotor functional recovery was assessed during the 8 weeks post operation period by performing a Basso, Beattie, and Bresnahan (BBB) locomotor score test. At the end of study, the animals were killed, and 1.5 cm segments of spinal cord encompassing the injury site were removed for immunohistochemistry, histopathological and western blotting analysis. Immunohistochemistry for GFAP, aggrecan, neurocan and NeuN was used to assess the degree of astrocytic glial scar formation and neuron survival. Immunohistochemistry and western blotting analysis for TNF-α, IL-6, IL-1β was used to evaluate the anti-inflammation effect of BBAE. To evaluate its inhibition effect on the astrocytes, we performed the MTT assay and immunohistochemistry for Ki67 in vitro. Results show that the BBAE-treated animals showed significantly better locomotor functional recovery, neuron death and smaller glial scar formation after spinal cord injury in vivo. In addition, BBAE administration could inhibit astrocyte proliferation in vivo and vitro. Therefore, BBAE may be useful as a promising therapeutic agent for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BBAE:

Bog bilberry anthocyanin extract

GFAP:

Glial fibrillary acidic protein

SCI:

Spinal cord injury

LFB staining:

Luxol fast blue staining

BBB locomotor score:

Basso, Beattie, and Bresnahan locomotor score

CSPGs:

Chondroitin sulfate proteoglycans

References

  1. Ronsyn MW, Berneman ZN, Van Tendeloo VF, Jorens PG, Ponsaerts P (2008) Can cell therapy heal a spinal cord injury? Spinal cord 46(8):532–539. doi:10.1038/sc.2008.13

    Article  PubMed  CAS  Google Scholar 

  2. Dreiseitel A, Korte G, Schreier P, Oehme A, Locher S, Domani M, Hajak G, Sand PG (2009) Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol Res 59(5):306–311. doi:10.1016/j.phrs.2009.01.014

    Article  PubMed  CAS  Google Scholar 

  3. Xing B, Li H, Wang H, Mukhopadhyay D, Fisher D, Gilpin CJ, Li S (2011) RhoA-inhibiting NSAIDs promote axonal myelination after spinal cord injury. Exp Neurol 231(2):247–260. doi:10.1016/j.expneurol.2011.06.018

    Article  PubMed  CAS  Google Scholar 

  4. Takeda M, Kawaguchi M, Kumatoriya T, Horiuchi T, Watanabe K, Inoue S, Konishi N, Furuya H (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine 36(23):1919–1924. doi:10.1097/BRS.0b013e3181ffda29

    Article  PubMed  Google Scholar 

  5. Shang AJ, Hong SQ, Xu Q, Wang HY, Yang Y, Wang ZF, Xu BN, Jiang XD, Xu RX (2011) NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102–113. doi:10.1016/j.brainres.2011.03.019

    Article  PubMed  CAS  Google Scholar 

  6. Penas C, Verdu E, Asensio-Pinilla E, Guzman-Lenis MS, Herrando-Grabulosa M, Navarro X, Casas C (2011) Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury. Neuroscience 178:33–44. doi:10.1016/j.neuroscience.2011.01.012

    Article  PubMed  CAS  Google Scholar 

  7. Jeong SR, Kwon MJ, Lee HG, Joe EH, Lee JH, Kim SS, Suh-Kim H, Kim BG (2012) Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 233(1):312–322. doi:10.1016/j.expneurol.2011.10.021

    Article  PubMed  CAS  Google Scholar 

  8. Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84(4–5):306–316. doi:10.1016/j.brainresbull.2010.06.015

    Article  PubMed  CAS  Google Scholar 

  9. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. doi:10.1016/j.tins.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  10. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155. doi:10.1523/JNEUROSCI.3547-03.2004

    Article  PubMed  CAS  Google Scholar 

  11. Rhodes K (2003) Inhibiting cell proliferation during formation of the glial scar: effects on axon regeneration in the CNS. Neuroscience 120(1):41–56. doi:10.1016/s0306-4522(03)00285-9

    Article  PubMed  CAS  Google Scholar 

  12. Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629

    Article  PubMed  CAS  Google Scholar 

  13. Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, Lamari FN (2009) Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 198(2):352–358. doi:10.1016/j.bbr.2008.11.013

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. Biochem 20(7):521–529. doi:10.1016/j.jnutbio.2008.05.011

    CAS  Google Scholar 

  15. Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA (2006) Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition 22(3):295–302. doi:10.1016/j.nut.2005.07.016

    Article  PubMed  CAS  Google Scholar 

  16. de Rivera C, Shukitt-Hale B, Joseph JA, Mendelson JR (2006) The effects of antioxidants in the senescent auditory cortex. Neurobiol Aging 27(7):1035–1044. doi:10.1016/j.neurobiolaging.2005.05.003

    Article  PubMed  Google Scholar 

  17. Youdim KA, Martin A, A. Joseph J (2000) Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biol Med 29:51–60

    Article  CAS  Google Scholar 

  18. Elisia I, Kitts DD (2008) Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells. Mol Cell Biochem 312(1–2):139–145. doi:10.1007/s11010-008-9729-1

    Article  PubMed  CAS  Google Scholar 

  19. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19(18):8114–8121

    PubMed  CAS  Google Scholar 

  20. Liu J, Zhang W, Jing H, Popovich DG (2010) Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured Hep-G2, Caco-2, and 3T3–L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability. J Food Sci 75(3):H103–H107. doi:10.1111/j.1750-3841.2010.01546.x

    Article  PubMed  CAS  Google Scholar 

  21. Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW (2007) How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 206(2):159–171. doi:10.1016/j.expneurol.2007.05.001

    Article  PubMed  CAS  Google Scholar 

  22. Wang Q, Xu Y, Xie MJ, Yu ZY, Qin YY, Wang W, Zhu Z (2011) X-irradiation reduces the proliferation of astrocytes by cell cycle arrest. Neurosci Lett 498(1):78–83. doi:10.1016/j.neulet.2011.04.067

    Article  PubMed  CAS  Google Scholar 

  23. Haas C, Neuhuber B, Yamagami T, Rao M, Fischer I (2012) Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Exp Neurol 233(2):717–732. doi:10.1016/j.expneurol.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  24. Dezonne RS, Stipursky J, Gomes FC (2009) Effect of thyroid hormone depletion on cultured murine cerebral cortex astrocytes. Neurosci Lett 467(2):58–62. doi:10.1016/j.neulet.2009.10.001

    Article  PubMed  CAS  Google Scholar 

  25. Pinto JT, Qiao C, Xing J, Rivlin RS, Protomastro ML, Weissler ML, Tao Y, Thaler H, Heston WD (1997) Effects of garlic thioallyl derivatives on growth, glutathione concentration, and polyamine formation of human prostate carcinoma cells in culture. Am J Clin Nutr 66(2):398–405

    PubMed  CAS  Google Scholar 

  26. Hirayama F, Lee AH, Binns CW, Zhao Y, Hiramatsu T, Tanikawa Y, Nishimura K, Taniguchi H (2009) Do vegetables and fruits reduce the risk of chronic obstructive pulmonary disease? A case-control study in Japan. Prev Med 49(2–3):184–189. doi:10.1016/j.ypmed.2009.06.010

    Article  PubMed  Google Scholar 

  27. Mirmiran P, Noori N, Zavareh MB, Azizi F (2009) Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 58(4):460–468. doi:10.1016/j.metabol.2008.11.002

    Article  PubMed  CAS  Google Scholar 

  28. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269(2):281–290. doi:10.1016/j.canlet.2008.05.020

    Article  PubMed  CAS  Google Scholar 

  29. Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15(3):415–436. doi:10.1016/j.nbd.2003.11.015

    Article  PubMed  Google Scholar 

  30. Chu GK, Yu W, Fehlings MG (2007) The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Neuroscience 148(3):668–682. doi:10.1016/j.neuroscience.2007.05.028

    Article  PubMed  CAS  Google Scholar 

  31. Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN (2004) Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res 153(1):181–188. doi:10.1016/j.bbr.2003.11.011

    Article  PubMed  CAS  Google Scholar 

  32. Niu S, Fei M, Cheng C, Yan M, Gao S, Chen M, Wang H, Li X, Yu X, Qian J, Qin J, Zhao J, Gu J, Shen A (2008) Altered beta-1, 4-galactosyltransferase I expression during early inflammation after spinal cord contusion injury. J Chem Neuroanat 35(3):245–256. doi:10.1016/j.jchemneu.2008.01.002

    Article  PubMed  CAS  Google Scholar 

  33. Rojo LE, Ribnicky D, Logendra S, Poulev A, Rojas-Silva P, Kuhn P, Dorn R, Grace MH, Lila MA, Raskin I (2012) In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem 131(2):387–396. doi:10.1016/j.foodchem.2011.08.066

    Article  CAS  Google Scholar 

  34. Sancho RAS, Pastore GM (2011) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int. doi:10.1016/j.foodres.2011.11.021

    Google Scholar 

  35. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19(18):8114–8121

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to Professor Hao Jing from the China Agricultural University and the Natural Science Foundation of China (No: 58441-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Wei or Zhongjun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Ma, C., Rong, W. et al. Bog Bilberry Anthocyanin Extract Improves Motor Functional Recovery by Multifaceted Effects in Spinal Cord Injury. Neurochem Res 37, 2814–2825 (2012). https://doi.org/10.1007/s11064-012-0883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0883-1

Keywords

Navigation