Neuroprotective Effects of Bacopa monnieri in Experimental Model of Dementia

Abstract

Alzheimer disease (AD) is characterized by dementia that begins as mild short term memory deficit and culminates in total loss of cognitive and executive functions. The present study was conducted to evaluate the neuroprotective potential of Bacopa monnieri (BM), an Indian traditional medicinal plant effective against cognitive impairment, in colchicine-induced dementia. Intracerebroventricular administration of colchicine (15 μg/5 μl) induced cognitive impairment in rats as assessed by elevated plus maze. This was accompanied by a significant increase in oxidative stress in term of enhanced levels of lipid peroxidation and protein carbonyls. Concomitantly, decrease in activity of antioxidant enzymes was observed in colchicine treated animals. BM (50 mg/kg body weight) supplementation reversed memory impairment observed in the colchicine treated rats. BM administration attenuated oxidative damage, as evident by decreased LPO and protein carbonyl levels and restoration in activities of the antioxidant enzymes. The activity of membrane bound enzymes (Na+K+ ATPase and AChE) was altered in colchicine treated brain regions and BM supplementation was able to restore the activity of enzymes to comparable values observed in controls. The results suggest therapeutic potential of BM in the treatment of AD associated cognitive decline.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    PubMed  Article  Google Scholar 

  2. 2.

    Armstrong RA (2006) Measuring the spatial arrangement patterns of pathological lesions in histological sections of brain tissue. Folia Neuropathol 44:229–237

    PubMed  CAS  Google Scholar 

  3. 3.

    Portelius E, Zetterberg H, Andreasson U, Brinkmalm G, Andreasen N, Wallin A, Westman-Brinkmalm A, Blennow K (2006) An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 409:215–219

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106:56–69

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Reddy PH (2007) Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid Redox Signal 9:1647–1658

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Ishrat T, Parveen K, Hoda MN, Khan MB, Yousuf S, Ansari MA, Saleem S, Islam F (2009) Effects of Pycnogenol and vitamin E on cognitive deficits and oxidative damage induced by intracerebroventricular streptozotocin in rats. Behav Pharmacol 20:567–575

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Nakayama T, Sawada T (2002) Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav 71:119–138

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Muller GJ, Geist MA, Veng LM, Willesen MG, Johansen FF, Leist M, Vaudano E (2006) A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption. J Neurochem 96:1242–1252

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Goldschmidt RB, Steward O (1982) Neurotoxic effects of colchicine: differential susceptibility of CNS neuronal populations. Neuroscience 7:695–714

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Kumar V, Gupta YK (2002) Intracerebroventricular administration of colchicine produces cognitive impairment associated with oxidative stress in rats. Pharmacol Biochem Behav 73:565–571

    Article  Google Scholar 

  14. 14.

    Bensimon G, Chermat R (1991) Microtubule disruption and cognitive defects: effect of colchicine on learning behavior in rats. Pharmacol Biochem Behav 38:141–145

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Nakagawa Y, Nakamura S, Kase Y, Noguchi T, Ishihara T (1987) Colchicine lesions in the rat hippocampus mimic the alterations of several markers in Alzheimer’s disease. Brain Res 408:57–64

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Blazer DG, Federspiel CF, Ray WA, Schaffner W (1983) The risk of anticholinergic toxicity in the elderly: a study of prescribing practices in two populations. J Gerontol 38:31–35

    PubMed  Google Scholar 

  17. 17.

    Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT (1998) A 24 week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease (Donepezil Study Group). Neurology 50:136–145

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Howes MJ, Houghton PJ (2012) Ethnobotanical treatment strategies against Alzheimer’s disease. Curr Alzheimer Res 9:67–85

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Anekonda TS, Reddy PH (2005) Can herbs provide a new generation of drugs for treating Alzheimer’s disease? Brain Res Brain Res Rev 50:361–376

    PubMed  Article  Google Scholar 

  20. 20.

    Dos Santos-Neto LL, de Vilhena Toledo MA, Medeiros-Souza P, de Souza GA (2006) The use of herbal medicine in Alzheimer’s disease-a systematic review. Evid Based Complement Alternat Med 3:441–445

    PubMed  Article  Google Scholar 

  21. 21.

    Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF (2003) Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol 184:510–520

    PubMed  Article  Google Scholar 

  24. 24.

    Garai S, Mahato SB, Ohtani K, Yamasaki K (1996) Bacopasaponin D—a pseudojujubogenin glycoside from Bacopa monniera. Phytochemistry 43:447–449

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Shinomol GK, Bharath MM, Muralidhara (2011) Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox Res 22:102–114

  26. 26.

    Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S (2000) Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 14:174–179

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Deepak M, Sangli GK, Arun PC, Amit A (2005) Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 16:24–29

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Mishra S, Srivastava S, Dwivedi S, Tripathi RD (2011) Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate. Environ Toxicol. doi:10.1002/tox.20733

  29. 29.

    Zhou Y, Peng L, Zhang WD, Kong DY (2009) Effect of triterpenoid saponins from Bacopa monniera on scopolamine-induced memory impairment in mice. Planta Med 75:568–574

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Holcomb LA, Dhanasekaran M, Hitt AR, Young KA, Riggs M, Manyam BV (2006) Bacopa monniera extract reduces amyloid levels in PSAPP mice. J Alzheimers Dis 9:243–251

    PubMed  Google Scholar 

  31. 31.

    Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K (2008) Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol 120:112–117

    PubMed  Article  Google Scholar 

  32. 32.

    Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K (2010) Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 127:26–31

    PubMed  Article  Google Scholar 

  33. 33.

    Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B (2008) Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med 14:707–713

    PubMed  Article  Google Scholar 

  34. 34.

    Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J (2002) Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 27:279–281

    PubMed  Article  Google Scholar 

  35. 35.

    Kumar A, Dogra S, Prakash A (2009) Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis 2009:pii972178

  36. 36.

    Jyoti A, Sethi P, Sharma D (2007) Bacopa monniera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J Ethnopharmacol 111:56–62

    PubMed  Article  Google Scholar 

  37. 37.

    Khurana S, Jain S, Mediratta PK, Banerjee BD, Sharma KK (2012) Protective role of curcumin on colchicine-induced cognitive dysfunction and oxidative stress in rats. Hum Exp Toxicol. doi:10.1177/0960327111433897

  38. 38.

    Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13:139–143

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Itoh J, Nabeshima T, Kameyama T (1991) Utility of an elevated plus-maze for dissociation of amnesic and behavioral effects of drugs in mice. Eur J Pharmacol 194:71–76

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Cartmell SM, Gelgor L, Mitchell D (1991) A revised rotarod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Methods 26:149–159

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    PubMed  CAS  Google Scholar 

  42. 42.

    Meder W, Fink K, Gothert M (1997) Involvement of different calcium channels in K+- and veratridine-induced increases of cytosolic calcium concentration in rat cerebral cortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 356:797–805

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Roberts JC, Francetic DJ (1993) The importance of sample preparation and storage in glutathione analysis. Anal Biochem 211:183–187

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Warholm M, Guthenberg C, von Bahr C, Mannervik B (1985) Glutathione transferases from human liver. Methods Enzymol 113:499–504

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Whittaker MW (1984) Cholinesterases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 52–74

    Google Scholar 

  52. 52.

    Quigley JP, Gotterer GS (1969) Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim Biophys Acta 173:456–468

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  54. 54.

    Shigematsu K, McGeer PL (1992) Accumulation of amyloid precursor protein in damaged neuronal processes and microglia following intracerebral administration of aluminum salts. Brain Res 593:117–123

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Chatterjee M, Verma P, Palit G (2010) Comparative evaluation of Bacopa monniera and Panax quniquefolium in experimental anxiety and depressive models in mice. Indian J Exp Biol 48:306–313

    PubMed  Google Scholar 

  57. 57.

    Shinomol GK, Muralidhara (2011) Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. Phytomedicine 18: 317–326

  58. 58.

    Kapoor R, Srivastava S, Kakkar P (2009) Bacopa monnieri modulates antioxidant responses in brain and kidney of diabetic rats. Environ Toxicol Pharmacol 27:62–69

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV (2007) Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res 21:965–969

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Jyoti A, Sharma D (2006) Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology 27:451–457

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Liochev SI, Fridovich I (2003) Mutant Cu, Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic Biol Med 34:1383–1389

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Russo A, Borrelli F (2005) Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 12:305–317

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Shen KK, Ji LL, Chen Y, Yu QM, Wang ZT (2011) Influence of glutathione levels and activity of glutathione-related enzymes in the brains of tumor-bearing mice. Biosci Trends 5:30–37

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Ishrat T, Parveen K, Khan MM, Khuwaja G, Khan MB, Yousuf S, Ahmad A, Shrivastav P, Islam F (2009) Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1281:117–127

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 374:222–226

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Struzynska L, Sulkowski G, Lenkiewicz A, Rafalowska U (2002) Lead stimulates the glutathione system in selective regions of rat brain. Folia Neuropathol 40:203–209

    PubMed  CAS  Google Scholar 

  71. 71.

    Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  72. 72.

    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  73. 73.

    Kamboj A, Kiran R, Sandhir R (2006) Carbofuran-induced neurochemical and neurobehavioral alterations in rats: attenuation by N-acetylcysteine. Exp Brain Res 170:567–575

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Milatovic D, Gupta RC, Aschner M (2006) Anticholinesterase toxicity and oxidative stress. ScientificWorldJournal 6:295–310

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Kaur B, Singh N, Jaggi AS (2009) Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam Clin Pharmacol 23:557–566

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Sharma B, Singh N, Singh M (2008) Modulation of celecoxib- and streptozotocin-induced experimental dementia of Alzheimer’s disease by pitavastatin and donepezil. J Psychopharmacol 22:162–171

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Koladiya RU, Jaggi AS, Singh N, Sharma BK (2008) Ameliorative role of Atorvastatin and Pitavastatin in l-Methionine induced vascular dementia in rats. BMC Pharmacol 8:14

    PubMed  Article  Google Scholar 

  78. 78.

    Barbosa J Jr, Ferreira LT, Martins-Silva C, Santos MS, Torres GE, Caron MG, Gomez MV, Ferguson SS, Prado MA, Prado VF (2002) Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex. J Neurochem 82:1221–1228

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Mathew J, Paul J, Nandhu MS, Paulose CS (2010) Increased excitability and metabolism in pilocarpine induced epileptic rats: effect of Bacopa monnieri. Fitoterapia 81:546–551

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Lees AJ (1993) Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam Clin Pharmacol 7:121–128

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Kaur J, Sharma D, Singh R (2001) Acetyl-L-carnitine enhances Na+, K+-ATPase glutathione-S-transferase and multiple unit activity and reduces lipid peroxidation and lipofuscin concentration in aged rat brain regions. Neurosci Lett 301:1–4

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Arivazhagan P, Panneerselvam C (2004) Alpha-lipoic acid increases Na+K+ATPase activity and reduces lipofuscin accumulation in discrete brain regions of aged rats. Ann NY Acad Sci 1019:350–354

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Rauchova H, Ledvinkova J, Kalous M, Drahota Z (1995) The effect of lipid peroxidation on the activity of various membrane-bound ATPases in rat kidney. Int J Biochem Cell Biol 27:251–255

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Dobrota D, Matejovicova M, Kurella EG, Boldyrev AA (1999) Na/K-ATPase under oxidative stress: molecular mechanisms of injury. Cell Mol Neurobiol 19:141–149

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Hebbel RP, Shalev O, Foker W, Rank BH (1986) Inhibition of erythrocyte Ca2+-ATPase by activated oxygen through thiol- and lipid-dependent mechanisms. Biochim Biophys Acta 862:8–16

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Cohadon F, Rigoulet M, Guerin B, Vandendriessche M (1979) Vasogenic cerebral oedema. Changes in membrane ATPases. Correction by a phospholipid precursor (author’s transl). Nouv Presse Med 8:1589–1591

    PubMed  CAS  Google Scholar 

  87. 87.

    Shinomol GK, Bharath MM, Muralidhara (2012) Pretreatment with Bacopa monnieri extract offsets 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in the striatum of prepubertal mouse brain. Can J Physiol Pharmacol 90:595–606

  88. 88.

    Sairam K, Rao CV, Babu MD, Goel RK (2001) Prophylactic and curative effects of Bacopa monniera in gastric ulcer models. Phytomedicine 8:423–430

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

The financial assistance provided from Department of Science and Technology (DST) New Delhi, under women scientist fellowship and DST-PURSE grants is highly acknowledged.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajat Sandhir.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saini, N., Singh, D. & Sandhir, R. Neuroprotective Effects of Bacopa monnieri in Experimental Model of Dementia. Neurochem Res 37, 1928–1937 (2012). https://doi.org/10.1007/s11064-012-0811-4

Download citation

Keywords

  • Alzheimer’s disease
  • Antioxidants
  • Bacopa monnieri
  • Colchicine
  • Dementia
  • Oxidative stress