Skip to main content

Oxidative Stress Induced NMDA Receptor Alteration Leads to Spatial Memory Deficits in Temporal Lobe Epilepsy: Ameliorative Effects of Withania somnifera and Withanolide A

Abstract

In the present study we investigate the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring spatial memory deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. We demonstrate significant cellular loss in hippocampus of epileptic rats, visualized through decreased TOPRO stained neurons. Impaired spatial memory was observed in epileptic rats after Radial arm maze test. Treatment with WS and WA has resulted in increased number of TOPRO stained neurons. Enhanced performance of epileptic rats treated with WS and WA was observed in Radial arm maze test. The antioxidant activity of WS and WA was studied using superoxide dismutase (SOD) and Catalase (CAT) assays in the hippocampus of experimental rats. The SOD activity and CAT activity decreased significantly in epileptic group, treatment with WS and WA significantly reversed the enzymatic activities to near control. Real time gene expression studies of SOD and GPx showed significant up-regulation in epileptic group compared to control. Treatment with WS and WA showed significant reversal to near control. Lipid peroxidation quantified using TBARS assay, significantly increased in epileptic rats. Treatment with WS and WA showed significant reversal to near control. NMDA receptor expression decreased in epileptic rats. The treatment with WS and WA resulted in physiological expression of NMDA receptors. This data suggests that oxidative stress effects membrane constitution resulting in decreased NMDA receptor density leading to impaired spatial memory. Treatment with WS and WA has ameliorated spatial memory deficits by enhancing antioxidant system and restoring altered NMDA receptor density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88(1):23–45

    PubMed  Article  CAS  Google Scholar 

  2. Costello DJ, Delanty N (2004) Oxidative injury in epilepsy: potential for antioxidant therapy? Expert Rev 4(3):541–553

    CAS  Google Scholar 

  3. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Kim HC (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59(2):122–137

    PubMed  Article  CAS  Google Scholar 

  4. Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol 99(2):165–178

    PubMed  Article  CAS  Google Scholar 

  5. Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatr 32(5):1093–1105

    Article  CAS  Google Scholar 

  6. Misra L, Sangwan NS, Tuli R (2008) Withanolides from Withania somnifera roots. Phytochemistry 69:1000–1004

    PubMed  Article  CAS  Google Scholar 

  7. Hort J, Brozek G, Komárek V, Langmeier M, Mares P (2000) Interstrain differences in cognitive functions in rats in relation to status epilepticus. Behav Brain Res 112(1–2):77–83

    PubMed  Article  CAS  Google Scholar 

  8. Pazdernik TL, Emerson MR, Cross R, Nelson SR, Samson FE (2001) Soman- induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 21:S87–S94

    PubMed  Article  CAS  Google Scholar 

  9. Lyne R, Freitas MD, Mônica Í et al (2010) Oxidative stress in rat hippocampus caused by pilocarpine-induced seizures is reversed by buspirone. Control 81:505–509

    Google Scholar 

  10. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  11. Freitas RM, Bezerra Felipe CF, Nascimento VS, Oliveira AA, Viana GS, Fonteles MM (2003) Pilocarpine-induced seizures in adult rats: monoamine content and muscarinic and dopaminergic receptor changes in the striatum. Comp Biochem Physiol C Toxicol Pharmacol 136(2):103–108

    PubMed  Article  Google Scholar 

  12. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann NY Acad Sci 928:22–38

    PubMed  Article  CAS  Google Scholar 

  13. Wasterlain CG, Fujikawa DG, Penix L, Sankar R (1993) Pathophysiological mechanisms of brain damage from status epilepti- cus. Epilepsia 34(1):S37–S53

    PubMed  Article  Google Scholar 

  14. Hauser WA, Hesdorffer DC (1990) Epilepsy: frequency, cause and consequences, 1st edn. Epilepsy Foundation of America Press/Demos, New York

    Google Scholar 

  15. Do SH, Kamatchi GL, Washington JM, Zuo Z (2002) Effects of volatile anesthetics on glutamate transporter, excitatory amino acid transporter type 3. Anesthesiology 96:1492–1497

    PubMed  Article  CAS  Google Scholar 

  16. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    PubMed  Article  CAS  Google Scholar 

  17. Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201

    PubMed  Article  CAS  Google Scholar 

  18. Sun DA, Sombati S, DeLorenzo RJ (2001) Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced “epilepsy”. Stroke 32(10):2344–2350

    PubMed  Article  CAS  Google Scholar 

  19. Urbanska EM, Czuczwar SJ, Kleinrok Z, Turski WA (1998) Excitatory amino acids in epilepsy. Restor Neurol Neurosci 13(1–2):25–39

    PubMed  CAS  Google Scholar 

  20. Z-zhong Guan (2008) Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer’s disease. Acta Pharmacol Sin 29(7):773–780

    Article  Google Scholar 

  21. Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43

    PubMed  Article  CAS  Google Scholar 

  22. Aamodt SM, Constantine-Paton M (1999) The role of neural activity in synaptic development and its implications for adult brain function. Adv Neurol 79:133–144

    PubMed  CAS  Google Scholar 

  23. Gröticke I, Hoffmann K, Löscher W (2008) Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp Neurol 213(1):71–83

    PubMed  Article  Google Scholar 

  24. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319

    PubMed  Article  CAS  Google Scholar 

  25. Turski WA, Cavalheiro EA, Schwarz M et al (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electro- encephalographic and neuropathological study. Behav Brain Res 9:315–335

    PubMed  Article  CAS  Google Scholar 

  26. Kobayashi M, Wen X, Buckmaster PS (2003) Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 23:8471–8479

    PubMed  CAS  Google Scholar 

  27. Racine RJ (1972) Modification of seizure activity by electrical stimu- lation: II. Motor seizure. Electroencephalogr Clin Neu- rophysiol 32:281–294

    Article  CAS  Google Scholar 

  28. Jarrard LE (1995) What does the hippocampus really do? Behav Brain Res 71(1–2):1–10

    PubMed  Article  CAS  Google Scholar 

  29. Lopes da Silva FH, Gorter JA, Wadman WJ (1986) Kindling of the hippocampus induces spatial memory deficits in the rat. Neurosci Lett 63(2):115–120

    PubMed  Article  CAS  Google Scholar 

  30. Mathew J, Gangadharan G, Kuruvilla KP, Paulose CS (2011) Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri. Neurochem Res 36(1):7–16

    PubMed  Article  CAS  Google Scholar 

  31. Hevner RF, Hodge RD, Daza RAM, Englund C (2006) Transcription factors in glutamatergic neurogenesis : conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55:223–233

    PubMed  Article  CAS  Google Scholar 

  32. Heffner TG, Hartman JA, Seiden LS (1980) A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav 13:453–456

    PubMed  Article  CAS  Google Scholar 

  33. Marklund S, Plum CM (1978) Superoxide dismutase in juvenile neuronal ceroid-lipofuscinosis (Spielmeyer-Vogt-Batten’s disease). J Neurochem 31(2):521–523

    PubMed  Article  CAS  Google Scholar 

  34. Aebi HE (1984) Catalase in vitro. Methods Enzymol 105:121–125

    PubMed  Article  CAS  Google Scholar 

  35. Freitas RM, Vasconcelos SMM, Souza FCF, Viana GSB, Fonteles MMF (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272(6):1307–1312

    PubMed  Article  CAS  Google Scholar 

  36. Hoffman DJ, Zanelli SA, Kubin JM, Om P, Delivoria PM (1996) The in vivo effect of bilirubin on the N-methyl-D-aspartate receptor/ion channel complex in the brains of newborn piglets. Pediatr Res 40:804–808

    PubMed  Article  CAS  Google Scholar 

  37. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  38. Lowry OH, Roserbbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  39. Chen S, Kobayashi M, Honda Y, Kakuta S, Sato F, Kiyoshi K (2007) Preferential neuron loss in rat piriform cortex following pilocarpine induced status epilepticus. Epilepsy Res 74:1–18

    PubMed  Article  CAS  Google Scholar 

  40. Mathern GW, Leiphart JL, DeVera A, Adelson PD, Seki T, Neder L, Leite JP (2002) Seizures decrease postnatal neurogenesis and granule cell development in the human fascia dentata. Epilepsia 43:68–73

    PubMed  Article  Google Scholar 

  41. Motamedi G, Meador K (2003) Epilepsy and cognition. Epilepsy Behav 4(2):25–38

    Article  Google Scholar 

  42. Eric JH, Philip AW, Edward FD (2002) Effect of Fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine induced epilepsy. Epilepsia 43:1337–1345

    Article  Google Scholar 

  43. Sagar H, Oxbury J M (1987) Hippocampal neuron loss in temporal lobe epilepsy: Correlation with early childhood convulsions. Ann Neurol 22(3):334–340

    PubMed  Article  CAS  Google Scholar 

  44. Oliver CN, Starke-Reed PE, Stadtman ER, Liku GJ, Carney JM, Floyd RA (1990) Oxidative damage to proteins, loss of glutamine synthetase activity and produc- tion of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci 87:5144–5147

    PubMed  Article  CAS  Google Scholar 

  45. Halliwell B, Gutteridge JMC (1999) Antioxidant defenses. In: Halliwell B, Gutteridge JMC (Eds) Free radicals in biology and medicine, 3rd ed. Oxford University Press, New York, pp 175

    Google Scholar 

  46. Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Alternat Med Rev J Clin Ther 5(4):334–346

    CAS  Google Scholar 

  47. Devi PU, Manocha A, Vohora D (2008) Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother 9(18):3169–3177

    PubMed  Article  CAS  Google Scholar 

  48. Felipe Dal-pizzol, Vianna ÃMR, Schro N et al (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182

    Article  Google Scholar 

  49. Dhuley JN (1998) Effect of ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 60:173–178

    PubMed  Article  CAS  Google Scholar 

  50. Naffah-Mazzacoratti MG, Cavalheiro EA, Ferreira EC, Abdalla DSP, Amado D, Bellissimo MI (2001) Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res 46:121–128

    PubMed  Article  Google Scholar 

  51. Mark RJ, Hensley K, Butterfield DA, Mattson MP (1995) Amyloid beta-peptide impairs ion-motiveATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15:6239–6249

    PubMed  CAS  Google Scholar 

  52. Blanc EM, Kelly JF, Mark RJ, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11). J Neurochem 69(2):570–580

    PubMed  Article  CAS  Google Scholar 

  53. Helms G, Ciumas C, Kyaga S, Savic I (2006) Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J Neurol Neurosurg Psychiatry 77(4):489–494

    PubMed  Article  CAS  Google Scholar 

  54. Van der Vliet A, Bast A (1990) Effect of oxidative stress on receptors and signal transmission. Chem Biol Interact 85(2–3):95–116

    Google Scholar 

  55. Wong-ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation of lipid bilayers: a molecular dynamic study. Biophys J 93:4225–4236

    PubMed  Article  CAS  Google Scholar 

  56. Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144(7):961–971

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from DST, DBT, ICMR, Govt. of India, and KSCSTE, Govt. of Kerala, to Dr. C. S. Paulose. Smijin Soman thanks the Department of Science and Technology, India for SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Paulose.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soman, S., Korah, P.K., Jayanarayanan, S. et al. Oxidative Stress Induced NMDA Receptor Alteration Leads to Spatial Memory Deficits in Temporal Lobe Epilepsy: Ameliorative Effects of Withania somnifera and Withanolide A. Neurochem Res 37, 1915–1927 (2012). https://doi.org/10.1007/s11064-012-0810-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0810-5

Keywords

  • Epilepsy
  • Withania somnifera
  • Antioxidant
  • NMDA