Skip to main content
Log in

Rapid Turnover of Glycogen in Memory Formation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The influence of noradrenaline acting at α2-AR and β2-ARs on the turnover of glycogen after learning has been investigated. The role of glycogen turnover in memory formation was examined using weakly-reinforced, single trial bead discrimination training in day-old domestic chickens. This study follows our previous work that focused on the need for glycogen breakdown (glycogenolysis) during learning. Inhibition of glycogenolysis by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) prevented the consolidation of strongly-reinforced learning and inhibited memory. The action of DAB could be prevented by stimulating glycogenolysis with the selective β2-AR agonist, zinterol. Stimulation of α2-ARs has been shown to lead to an increase in the turnover and synthesis of glycogen. In the present study, we examined the effect of inhibition of α2-AR stimulated glycogen turnover (measured as14C-glucose incorporation into glycogen) on the ability of zinterol to promote the consolidation of weakly reinforced memory. In astrocytes, the selective α2-AR agonist clonidine stimulated 14C-glucose incorporation into glycogen in chick astrocytes and this was inhibited by the selective α2-AR antagonist, ARC239. The critical importance of the timing of ARC239 injection relative to training and intracerebral administration of zinterol was examined. It is concluded that our data provides evidence for a readily accessible labile pool of glycogen in brain astrocytes. If glycogen synthesis is inhibited, the can be depleted within 10 min, thus preventing zinterol from promoting consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Watanabe H, Passonneau JV (1973) Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20(6):1543–1554

    Article  PubMed  CAS  Google Scholar 

  2. Choi IY, Seaquist ER, Gruetter R (2003) Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72(1):25–32

    Article  PubMed  CAS  Google Scholar 

  3. Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulaiton induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51:451–461

    Article  PubMed  CAS  Google Scholar 

  4. Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489

    Article  PubMed  CAS  Google Scholar 

  5. O’Dowd BS, Gibbs ME, Ng KT, Hertz E, Hertz L (1994) Astrocytic glycogenolysis energizes memory processes in neonate chicks. Devel Brain Res 78:137–141

    Article  Google Scholar 

  6. Hertz L, O’Dowd BS, Ng KT, Gibbs ME (2003) Reciprocal changes in forebrain contents of glycogen and of glutamate/glutamine during early memory consolidation in the day-old chick. Brain Res 994:226–233

    Article  PubMed  CAS  Google Scholar 

  7. Waagepetersen HS, Westergaard N, Schousboe A (2000) The effects of isofagomine, a potent glycogen phosphorylase inhibitor, on glycogen metabolism in cultured mouse cortical astrocytes. Neurochem Int 36:435–440

    Article  PubMed  CAS  Google Scholar 

  8. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chicks. Glia 54:214–222

    Article  PubMed  Google Scholar 

  9. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823

    Article  PubMed  CAS  Google Scholar 

  10. Gibbs ME, Summers RJ (2002) Role of adrenoceptor subtypes in memory consolidation. Prog Neurobiol 67:345–391

    Article  PubMed  CAS  Google Scholar 

  11. Gibbs ME, Hutchinson DS, Summers RJ (2008) Role of β-adrenoceptors in memory consolidation: β3-adrenoceptors act on glucose uptake and β2-adrenoceptors on glycogenolysis. Neuropsychopharmacol 33:2384–2397

    Article  CAS  Google Scholar 

  12. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249

    Article  PubMed  CAS  Google Scholar 

  13. Hutchinson DS, Summers RJ, Gibbs ME (2008) Energy metabolism and memory processing: role of glucose transport and glycogen in responses to adrenoceptor activation in the chicken. Brain Res Bull 76(3):224–234

    Article  PubMed  CAS  Google Scholar 

  14. Hutchinson DS, Catus SL, Merlin J, Summers RJ, Gibbs ME (2011) Alpha-Adrenoceptors activate noradrenaline-mediated glycogen turnover in chick astrocytes. J Neurochem 117(5):915–926

    Article  PubMed  CAS  Google Scholar 

  15. Walling SG, Bromley K, Harley CW (2006) Glycogen phosphorylase reactivity in the entorhinal complex in familiar and novel environments: evidence for labile glycogenolytic modules in the rat. J Chem Neuroanat 31(2):108–113

    Article  PubMed  CAS  Google Scholar 

  16. Hertz L, Gibbs ME (2009) What learning in day-old chickens can teach a neurochemist: focus on astrocytic metabolism. J Neurochem 109(suppl 1):10–16

    Article  PubMed  CAS  Google Scholar 

  17. Gibbs ME, Johnston AN, Mileusnic R, Crowe SF (2008) A comparison of protocols for passive and discriminative avoidance learning tasks in the domestic chick. Brain Res Bull 76(3):198–207

    Article  PubMed  Google Scholar 

  18. Gibbs ME, Hutchinson DS, Hertz L (2008) Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev 32:927–944

    Article  PubMed  Google Scholar 

  19. Hutchinson DS, Summers RJ, Gibbs ME (2007) β2- and β3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement? J Neurochem 103:997–1008

    Article  PubMed  CAS  Google Scholar 

  20. Young AA, Gedulin B, Wolfe-Lopez D, Greene HE, Rink TJ, Cooper GJ (1992) Amylin and insulin in rat soleus muscle: dose responses for cosecreted noncompetitive antagonists. Am J Physiol 263(2 Pt 1):E274–E281

    PubMed  CAS  Google Scholar 

  21. Brady MJ (2003) Measurement of glycogen synthesis and glycogen synthase activity in 3T3-L1 adipocytes. Methods Mol Med 83:155–161

    PubMed  CAS  Google Scholar 

  22. Gibbs ME, Ng K (1977) Psychobiology of memory: towards a model of memory formation. Biobehav Revs 1:113–137

    Article  CAS  Google Scholar 

  23. Jeffrey PL, Gibbs ME (1976) Biochemical actions of sympathomimetic drugs which overcome cycloheximide induced amnesia. Pharmacol Biochem Behav 5:571–575

    Article  PubMed  CAS  Google Scholar 

  24. Hajek I, Subbarao KC, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+ ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28(3):335–342

    Article  PubMed  CAS  Google Scholar 

  25. Gibbs ME, Summers RJ (2010) Noradrenaline release in the locus coeruleus modulates memory formation and consolidation; roles for α and β-adrenergic receptors. Neurosci 170:1209–1222

    Article  CAS  Google Scholar 

  26. Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102(2):466–478

    Article  PubMed  CAS  Google Scholar 

  27. Walls AB, Heimburger CM, Bouman D, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    Article  PubMed  CAS  Google Scholar 

  28. Harley CW, Milway JS, Fara-On M (1995) Medial forebrain bundle stimulation in rats activates glycogen phosphorylase in layers 4, 5b and 6 of ipsilateral granular neocortex. Brain Res 685(1–2):217–223

    Article  PubMed  CAS  Google Scholar 

  29. Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292(3):E946–E951

    Article  PubMed  CAS  Google Scholar 

  30. Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12:4923–4931

    PubMed  CAS  Google Scholar 

  31. Graham TE, Yuan Z, Hill AK, Wilson RJ (2010) The regulation of muscle glycogen: the granule and its proteins. Acta Physiol (Oxf) 199(4):489–498

    Article  CAS  Google Scholar 

  32. Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30(10):1295–1304

    Article  PubMed  CAS  Google Scholar 

  33. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  PubMed  CAS  Google Scholar 

  34. Sickmann HM, Walls AB, Schousboe A, Bouman SD, Waagepetersen HS (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109(Suppl 1):80–86

    Article  PubMed  CAS  Google Scholar 

  35. Gibbs ME, Lloyd HGE, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precorsor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85(15):3326–3333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Dr Dana Hutchinson is supported by a National Health and Medical Research Council (NHMRC) Career Development Award (545952).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie E. Gibbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, M.E., Hutchinson, D.S. Rapid Turnover of Glycogen in Memory Formation. Neurochem Res 37, 2456–2463 (2012). https://doi.org/10.1007/s11064-012-0805-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0805-2

Keywords

Navigation