Neurochemical Research

, Volume 37, Issue 11, pp 2419–2431 | Cite as

Role of Astrocytes in Pain

  • C.-Y. ChiangEmail author
  • B. J. Sessle
  • J. O. Dostrovsky


Over the last decade, a series of studies has demonstrated that glia in the central nervous system play roles in many aspects of neuronal functioning including pain processing. Peripheral tissue damage or inflammation initiates signals that alter the function of the glial cells (microglia and astrocytes in particular), which in turn release factors that regulate nociceptive neuronal excitability. Like immune cells, these glial cells not only react at sites of central and/or peripheral nervous system damage but also exert their action at remote sites from the focus of injury or disease. As well as extensive evidence of microglial involvement in various pain states, there is also documentation that astrocytes are involved, sometimes seemingly playing a more dominant role than microglia. The interactions between astrocytes, microglia and neurons are now recognized as fundamental mechanisms underlying acute and chronic pain states. This review focuses on recent advances in understanding of the role of astrocytes in pain states.


Astrocyte Intracellular calcium Gliotransmitter Chemokine Inflammatory pain Neuropathic pain 



This work was supported by the NIH Grant DE-04786 to B.J.S. and CIHR Grant MOP-82831 to J.O.D.


  1. 1.
    Perl ER (2007) Ideas about pain, a historical view. Nat Rev Neurosci 8:71–80PubMedCrossRefGoogle Scholar
  2. 2.
    Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–376PubMedCrossRefGoogle Scholar
  3. 3.
    Ren K, Dubner R (1999) Central nervous system plasticity and persistent pain. J Orofac Pain 13:155–163PubMedGoogle Scholar
  4. 4.
    Dostrovsky JO (2000) Role of thalamus in pain. In: Sandkuhler J, Bromm B, Gebhart GF (eds) Nervous system plasticity and chronic pain. Prog Brain Res 129:245–257 (Elsevier, Amsterdam)Google Scholar
  5. 5.
    Sessle BJ (2005) Trigeminal central sensitization. Rev Analg 8:85–102CrossRefGoogle Scholar
  6. 6.
    Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705PubMedCrossRefGoogle Scholar
  7. 7.
    Woolf CJ, Salter MW (2006) Plasticity and pain: role of the dorsal horn. In: McMahon SB, Koltzenburg M (eds) Wall and melzack’s textbook of pain, chapter 5, 5th edn. Elsevier, London, pp 91–105CrossRefGoogle Scholar
  8. 8.
    Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36PubMedCrossRefGoogle Scholar
  9. 9.
    Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368PubMedCrossRefGoogle Scholar
  10. 10.
    Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA (2009) Chemokines and pain mechanisms. Brain Res Rev 60:125–134PubMedCrossRefGoogle Scholar
  11. 11.
    Romero-Sandoval EA, Horvath RJ, DeLeo JA (2008) Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 9:726–734PubMedGoogle Scholar
  12. 12.
    Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114:13–27PubMedGoogle Scholar
  13. 13.
    Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276PubMedCrossRefGoogle Scholar
  14. 14.
    Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810PubMedCrossRefGoogle Scholar
  15. 15.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640PubMedCrossRefGoogle Scholar
  16. 16.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031PubMedCrossRefGoogle Scholar
  17. 17.
    Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376PubMedCrossRefGoogle Scholar
  18. 18.
    Fellin T (2009) Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 108:533–544PubMedCrossRefGoogle Scholar
  19. 19.
    Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174PubMedCrossRefGoogle Scholar
  20. 20.
    Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238PubMedCrossRefGoogle Scholar
  21. 21.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243PubMedCrossRefGoogle Scholar
  22. 22.
    Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355PubMedCrossRefGoogle Scholar
  23. 23.
    Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99PubMedCrossRefGoogle Scholar
  24. 24.
    Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743PubMedCrossRefGoogle Scholar
  25. 25.
    Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRefGoogle Scholar
  26. 26.
    Garrison CJ, Dougherty PM, Kajander KC, Carlton SM (1991) Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res 565:1–7PubMedCrossRefGoogle Scholar
  27. 27.
    Garrison CJ, Dougherty PM, Carlton SM (1994) GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol 129:237–243PubMedCrossRefGoogle Scholar
  28. 28.
    Hassel B, Paulsen RE, Johnson A, Fonnum F (1992) Selective inhibition of glial cell metabolism by fluorocitrate. Brain Res 249:120–124CrossRefGoogle Scholar
  29. 29.
    Meller ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GF (1994) The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33:1471–1478PubMedCrossRefGoogle Scholar
  30. 30.
    Calì C, Marchaland J, Spagnuolo P, Gremion J, Bezzi P (2009) Regulated exocytosis from astrocytes physiological and pathological related aspects. Int Rev Neurobiol 85:261–293PubMedCrossRefGoogle Scholar
  31. 31.
    McMahon SB, Malcongio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54PubMedCrossRefGoogle Scholar
  32. 32.
    Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60:135–148PubMedCrossRefGoogle Scholar
  33. 33.
    Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68PubMedCrossRefGoogle Scholar
  34. 34.
    Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92PubMedCrossRefGoogle Scholar
  35. 35.
    Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455PubMedCrossRefGoogle Scholar
  36. 36.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394PubMedCrossRefGoogle Scholar
  37. 37.
    Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469–1479PubMedCrossRefGoogle Scholar
  38. 38.
    Jarvis MF (2009) The neural–glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 33:48–57PubMedCrossRefGoogle Scholar
  39. 39.
    Xu Q, Yaksh TL (2011) A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 24:400–407PubMedCrossRefGoogle Scholar
  40. 40.
    Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476PubMedCrossRefGoogle Scholar
  41. 41.
    Ohara PT, Vit J-P, Bhargava A, Romero M, Sundberg C, Charles A, Jasmin L (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463PubMedCrossRefGoogle Scholar
  42. 42.
    Takeda M, Takahashi M, Matsumoto S (2009) Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev 33:784–792PubMedCrossRefGoogle Scholar
  43. 43.
    Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ (2011) Role of glia in orofacial pain. Neuroscientist 17:303–320PubMedCrossRefGoogle Scholar
  44. 44.
    Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M (2007) Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11:223–230PubMedCrossRefGoogle Scholar
  45. 45.
    Qin M, Wang JJ, Cao R, Zhang H, Duan L, Gao B, Xiong YF, Chen LW, Rao ZR (2006) The lumbar spinal cord glial cells actively modulate subcutaneous formalin induced hyperalgesia in the rat. Neurosci Res 55:442–450PubMedCrossRefGoogle Scholar
  46. 46.
    Chiang CY, Zhang S, Xie YF, Hu JW, Dostrovsky JO, Sessle BJ (2005) Endogenous ATP involvement in mustard oil-induced central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). J Neurophysiol 94:1751–1760PubMedCrossRefGoogle Scholar
  47. 47.
    Xie YF, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ (2007) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun 21:634–641PubMedCrossRefGoogle Scholar
  48. 48.
    Romero-Sandoval A, Chai N, Nutile-McMenemy N, Deleo JA (2008) A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res 1219:116–126PubMedCrossRefGoogle Scholar
  49. 49.
    Shimizu K, Guo W, Wang H, Lagraize SC, Zou S, Iwata K, Wei F, Dubner R, Ren K (2009) Differential involvement of trigeminal transition zone and laminated subnucleus caudalis in orofacial deep and cutaneous hyperalgesia: the effects of interleukin-10 and glial inhibitors. Mol Pain 5:75PubMedCrossRefGoogle Scholar
  50. 50.
    Raghavendra V, Tanga FY, DeLeo JA (2004) Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 20:467–473PubMedCrossRefGoogle Scholar
  51. 51.
    Lee MK, Han SR, Park MK, Kim MJ, Bae YC, Kim SK, Park JS, Ahn DK (2011) Behavioral evidence for the differential regulation of p-p38 MAPK and p-NF-kappa B in rats with trigeminal neuropathic pain. Mol Pain 7:57PubMedCrossRefGoogle Scholar
  52. 52.
    Cao Y, Li K, Fu K, Xie Q (2009) Activation of mitogen-activated protein kinases in Vsp following occlusal interference. IADR Pan Asian Pac Fed (PAPF) and IADR Asia/Pac Reg (APR) Sept 22–24 No 521Google Scholar
  53. 53.
    Tsuboi Y, Iwata K, Dostrovsky JO, Chiang CY, Sessle BJ, Hu JW (2011) Modulation of astroglial glutamine synthetase activity affects nociceptive behaviour and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis. Eur J Neurosci 34:292–302PubMedCrossRefGoogle Scholar
  54. 54.
    Tanga FY, Raghavendra V, Nutile-McMenemy N, Marks A, Deleo JA (2006) Role of astrocytic S100beta in behavioral hypersensitivity in rodent models of neuropathic pain. Neuroscience 140:1003–1010PubMedCrossRefGoogle Scholar
  55. 55.
    Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29:11161–11171PubMedCrossRefGoogle Scholar
  56. 56.
    Kobayashi A, Shinoda M, Sessle BJ, Honda K, Imamura Y, Hitomi S, Tsuboi Y, Okada-Ogawa A, Iwata K (2011) Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats. Mol Pain 7:12PubMedCrossRefGoogle Scholar
  57. 57.
    Vega-Avelaira D, Moss A, Fitzgerald M (2007) Age-related changes in the spinal cord microglial and astrocytic response profile to nerve injury. Brain Behav Immun 21:617–623PubMedCrossRefGoogle Scholar
  58. 58.
    Latrémolière A, Mauborgne A, Masson J, Bourgoin S, Kayser V, Hamon M, Pohl M (2008) Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. J Neurosci 28:8489–8501PubMedCrossRefGoogle Scholar
  59. 59.
    Milligan ED, Mehmert KK, Hinde JL, Harvey LO, Martin D, Tracey KJ, Maier SF, Watkins LR (2000) Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res 861:105–116PubMedCrossRefGoogle Scholar
  60. 60.
    Bardoni R, Ghirri A, Zonta M, Betelli C, Vitale G, Ruggieri V, Sandrini M, Carmignoto G (2010) Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J Physiol 588:831–846PubMedCrossRefGoogle Scholar
  61. 61.
    Gao YJ, Zhang L, Ji RR (2010) Spinal injection of TNF-α-activated astrocytes produces persistent pain symptom mechanical allodynia by releasing monocyte chemoattractant protein-1. Glia 58:1871–1880PubMedCrossRefGoogle Scholar
  62. 62.
    Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 108:8467–8472PubMedCrossRefGoogle Scholar
  63. 63.
    DeLeo JA, Rutkowski MD, Stalder AK, Campbell IL (2000) Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model. NeuroReport 11:599–602PubMedCrossRefGoogle Scholar
  64. 64.
    Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783PubMedCrossRefGoogle Scholar
  65. 65.
    Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl Acad Sci USA 104:10655–10660PubMedCrossRefGoogle Scholar
  66. 66.
    Staniland AA, Clark AK, Wodarski R, Sasso O, Maione F, D’Acquisto F, Malcangio M (2010) Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem 114:1143–1157PubMedGoogle Scholar
  67. 67.
    Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial TNFα in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 7:40PubMedCrossRefGoogle Scholar
  68. 68.
    Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30:573–582PubMedCrossRefGoogle Scholar
  69. 69.
    Nakajima A, Tsuboi Y, Suzuki I, Honda K, Shinoda M, Kondo M, Matsuura S, Shibuta K, Yasuda M, Shimizu N, Iwata K (2011) PKCgamma in Vc and C1/C2 is involved in trigeminal neuropathic pain. J Dent Res 90:777–781PubMedCrossRefGoogle Scholar
  70. 70.
    Wang W, Mei XP, Wei YY, Zhang MM, Zhang T, Wang W, Xu LX, Wu SX, Li YQ (2011) Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun 25:1355–1366PubMedCrossRefGoogle Scholar
  71. 71.
    Wang H, Guo W, Yang K, Wei F, Dubner R (2010) Contribution of primary afferent input to trigeminal astroglial hyperactivity, cytokine induction and NMDA receptor phosphorylation. Open Pain J 3:144–152Google Scholar
  72. 72.
    Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H, Koyanagi S, Ohdo S, Ji RR, Salter MW, Inoue K (2011) JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 134(Pt 4):1127–1139PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang RX, Li A, Liu B, Wang L, Ren K, Zhang H, Berman BM, Lao L (2008) IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain 135:232–239PubMedCrossRefGoogle Scholar
  74. 74.
    Gustafson-Vickers SL, Lu VB, Lai AY, Todd KG, Ballanyi K, Smith PA (2008) Long-term actions of interleukin-1beta on delay and tonic firing neurons in rat superficial dorsal horn and their relevance to central sensitization. Mol Pain 4:63PubMedCrossRefGoogle Scholar
  75. 75.
    Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018PubMedCrossRefGoogle Scholar
  76. 76.
    Takahashi K, Watanabe M, Suekawa Y, Ito G, Inubushi T, Hirose N, Murasaki K, Hiyama S, Uchida T, Tanne K (2011) IL-1beta in the trigeminal subnucleus caudalis contributes to extra-territorial allodynia/hyperalgesia following a trigeminal nerve injury. Eur J Pain 15:467.e1–467.e14Google Scholar
  77. 77.
    Ledeboer A, Gamanos M, Lai W, Martin D, Maier SF, Watkins LR, Quan N (2005) Involvement of spinal cord nuclear factor kappaB activation in rat models of proinflammatory cytokine-mediated pain facilitation. Eur J Neurosci 22:1977–1986PubMedCrossRefGoogle Scholar
  78. 78.
    Fu ES, Zhang YP, Sagen J, Candiotti KA, Morton PD, Liebl DJ, Bethea JR, Brambilla R (2010) Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain 148:509–518PubMedCrossRefGoogle Scholar
  79. 79.
    Spicarova D, Nerandzic V, Palecek J (2011) Modulation of spinal cord synaptic activity by tumor necrosis factor alpha in a model of peripheral neuropathy. J Neuroinflammation 8:177PubMedCrossRefGoogle Scholar
  80. 80.
    Park CK, Lü N, Xu ZZ, Liu T, Serhan CN, Ji RR (2011) Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci 31(42):15072–15085PubMedCrossRefGoogle Scholar
  81. 81.
    Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102:5856–5861PubMedCrossRefGoogle Scholar
  82. 82.
    Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008) P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28:2892–2902PubMedCrossRefGoogle Scholar
  83. 83.
    Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28:4949–4956PubMedCrossRefGoogle Scholar
  84. 84.
    Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359PubMedCrossRefGoogle Scholar
  85. 85.
    Trang T, Beggs S, Salter MW (2011) ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol. doi: 10.1016/j.expneurol.2011.11.012 PubMedGoogle Scholar
  86. 86.
    Itoh K, Chiang CY, Li Z, Lee JC, Dostrovsky JO, Sessle BJ (2011) Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors. Neuroscience 192:721–731PubMedCrossRefGoogle Scholar
  87. 87.
    Xia M, Zhu Y (2011) Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 59:664–674PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang J, De Koninck Y (2006) Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 97:772–783PubMedCrossRefGoogle Scholar
  89. 89.
    Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336PubMedCrossRefGoogle Scholar
  90. 90.
    Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial TNFα in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 20(7):40CrossRefGoogle Scholar
  91. 91.
    Gao YJ, Ji RR (2010) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7:482–493PubMedCrossRefGoogle Scholar
  92. 92.
    Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR (2007) Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal 7:98–111PubMedCrossRefGoogle Scholar
  93. 93.
    Liu X, Cheng C, Shao B, Wu X, Ji Y, Liu Y, Lu X, Shen A (2011) CDK11(p58) promotes rat astrocyte inflammatory response via activating p38 and JNK pathways induced by lipopolysaccharide. Neurochem Res. doi: 10.1007/s11064-011-0643-7 Google Scholar
  94. 94.
    Wei F, Guo W, Zou S, Ren K, Dubner R (2008) Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 28:10482–10495PubMedCrossRefGoogle Scholar
  95. 95.
    Fonnum F, Johnsen A, Hassel B (1997) Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 21:106–113PubMedCrossRefGoogle Scholar
  96. 96.
    Proudfoot AT, Bradberry SM, Vale JA (2006) Sodium fluoroacetate poisoning. Toxicol Rev 25:213–219PubMedCrossRefGoogle Scholar
  97. 97.
    Watkins LR, Martin D, Ulrich P, Tracey KJ, Maier SF (1997) Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71:225–235PubMedCrossRefGoogle Scholar
  98. 98.
    Obata H, Eisenach JC, Hussain H, Bynum T, Vincler M (2006) Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain 7:816–822PubMedCrossRefGoogle Scholar
  99. 99.
    Chen Y, Willcockson HH, Valtschanoff JG (2009) Influence of the vanilloid receptor TRPV1 on the activation of spinal cord glia in mouse models of pain. Exp Neurol 220:383–390PubMedCrossRefGoogle Scholar
  100. 100.
    Chacur M, Gutiérrez JM, Milligan ED, Wieseler-Frank J, Britto LR, Maier SF, Watkins LR, Cury Y (2004) Snake venom components enhance pain upon subcutaneous injection: an initial examination of spinal cord mediators. Pain 111:65–76PubMedCrossRefGoogle Scholar
  101. 101.
    Jiang F, Liu T, Cheng M, Pang XY, Bai ZT, Zhou JJ, Ji YH (2009) Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karch. Eur J Pharmacol 623:52–64PubMedCrossRefGoogle Scholar
  102. 102.
    Ying B, Lü N, Zhang YQ, Zhao ZQ (2006) Involvement of spinal glia in tetanically sciatic stimulation-induced bilateral mechanical allodynia in rats. Biochem Biophys Res Commun 340:1264–1272PubMedCrossRefGoogle Scholar
  103. 103.
    Miraucourt LS, Peirs C, Dallel R, Voisin DL (2011) Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived d-serine. Pain 152:1340–1348PubMedCrossRefGoogle Scholar
  104. 104.
    Roberts J, Ossipov MH, Porreca F (2009) Glial activation in the rostroventromedial medulla promotes descending facilitation to mediate inflammatory hypersensitivity. Eur J Neurosci 30:229–241PubMedCrossRefGoogle Scholar
  105. 105.
    Sun S, Cao H, Han M, Li TT, Zhao ZQ, Zhang YQ (2008) Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res Bull 75:83–93PubMedCrossRefGoogle Scholar
  106. 106.
    Chen J, Zhang J, Zhao Y, Yuan L, Nie X, Li J, Ma Z, Zhang Y, Wang Q, Chen Y, Jin Y, Rao Z (2007) Hyperalgesia in response to traumatic occlusion and GFAP expression in rat parabrachial nucleus: modulation with fluorocitrate. Cell Tissue Res 329:231–237PubMedCrossRefGoogle Scholar
  107. 107.
    Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23:1026–1040PubMedGoogle Scholar
  108. 108.
    Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286PubMedCrossRefGoogle Scholar
  109. 109.
    Danbolt NC (2001) Glutamate uptake. Progr Neurobiol 65:1–105CrossRefGoogle Scholar
  110. 110.
    Kanamori K, Ross BD (2006) Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain. J Neurochem 99:1103–1113PubMedCrossRefGoogle Scholar
  111. 111.
    Chiang CY, Wang J, Xie YF, Zhang S, Hu JW, Dostrovsky JO, Sessle BJ (2007) Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn. J Neurosci 27:9068–9076PubMedCrossRefGoogle Scholar
  112. 112.
    Chiang CY, Li Z, Dostrovsky JO, Hu JW, Sessle BJ (2008) Glutamine uptake contributes to central sensitization in the medullary dorsal horn. NeuroReport 18:1151–1154CrossRefGoogle Scholar
  113. 113.
    Sung B, Lim G, Mao J (2003) Altered expression and uptake activity of spinal glutamate transporters following peripheral nerve injury contributes to the pathogenesis of neuropathic pain in rats. J Neurosci 23:2899–2910PubMedGoogle Scholar
  114. 114.
    Weng HR, Aravindan N, Cata JP, Chen JH, Shaw AD, Dougherty PM (2005) Spinal glial glutamate transporters downregulate in rats with taxol-induced hyperalgesia. Neurosci Lett 386:18–22PubMedCrossRefGoogle Scholar
  115. 115.
    Nakagawa T, Kaneko S (2010) Spinal astrocytes as therapeutic targets for pathological pain. J Pharmacol Sci 114:347–353PubMedCrossRefGoogle Scholar
  116. 116.
    Sweitzer S, De Leo JA (2011) Propentofylline: glial modulation, neuroprotection, and alleviation of chronic pain. Handb Exp Pharmacol 200:235–250PubMedCrossRefGoogle Scholar
  117. 117.
    Liaw WJ, Stephens RL Jr, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao YX (2005) Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 115:60–70PubMedCrossRefGoogle Scholar
  118. 118.
    Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725PubMedCrossRefGoogle Scholar
  119. 119.
    Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711PubMedCrossRefGoogle Scholar
  120. 120.
    Scemes E, Spray DC, Meda P (2009) Connexins, Pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457:1207–1226PubMedCrossRefGoogle Scholar
  121. 121.
    Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215PubMedCrossRefGoogle Scholar
  122. 122.
    Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385PubMedCrossRefGoogle Scholar
  123. 123.
    Lan L, Yuan H, Duan L, Cao R, Gao B, Shen J, Xiong Y, Chen LW, Rao ZR (2007) Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in the rat. Neurosci Res 57:112–119PubMedCrossRefGoogle Scholar
  124. 124.
    Chiang CY, Li Z, Dostrovsky JO, Sessle BJ (2010) Central sensitization in medullary dorsal horn involves gap junctions and hemichannels. NeuroReport 21:233–237PubMedCrossRefGoogle Scholar
  125. 125.
    Spataro LE, Sloane EM, Milligan ED, Wieseler-Frank J, Schoeniger D, Jekich BM, Barrientos RM, Maier SF, Watkins LR (2004) Spinal gap junctions: potential involvement in pain facilitation. J Pain 5:392–405PubMedCrossRefGoogle Scholar
  126. 126.
    Wang H, Cao Y, Chiang CY, Dostrovsky JO, Sessle BJ (2011) Carbenoxolone attenuates neuropathic pain behaviour and medullary dorsal horn central sensitization associated with partial infraorbital nerve transection in rats. Am Neurosci Abstr 73.04Google Scholar
  127. 127.
    Hatashita S, Sekiguchi M, Kobayashi H, Konno S, Kikuchi S (2008) Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats. Spine 33:1344–1351PubMedCrossRefGoogle Scholar
  128. 128.
    Wu XF, Liu WT, Liu YP, Huang ZJ, Zhang YK, Song XJ (2011) Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord. Pain 152:2605–2615PubMedCrossRefGoogle Scholar
  129. 129.
    Oliet SH, Mothet JP (2009) Regulation of N-methyl-D-aspartate receptors by astrocytic d-serine. Neuroscience 158:275–283PubMedCrossRefGoogle Scholar
  130. 130.
    Ren WH, Guo JD, Cao H, Wang H, Wang PF, Sha H, Ji RR, Zhao ZQ, Zhang YQ (2006) Is endogenous d-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? J Neurochem 96:1636–1647PubMedCrossRefGoogle Scholar
  131. 131.
    Miraucourt LS, Peirs C, Dallel R, Voisin DL (2011) Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived d-serine. Pain 152:1340–1348PubMedCrossRefGoogle Scholar
  132. 132.
    Guo JD, Wang H, Zhang YQ, Zhao ZQ (2006) Distinct effects of d-serine on spinal nociceptive responses in normal and carrageenan-injected rats. Biochem Biophys Res Commun 343:401–406PubMedCrossRefGoogle Scholar
  133. 133.
    Lu JM, Gong N, Wang YC, Wang YX (2011) DAAO-mediated spinal hydrogen peroxide is specifically and largely responsible for formalin-induced central sensitization-involved pain. Br J Pharmacol doi. doi: 10.1111/j.1476-5381.2011.01680.x Google Scholar
  134. 134.
    Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823PubMedCrossRefGoogle Scholar
  135. 135.
    Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575PubMedCrossRefGoogle Scholar
  136. 136.
    Clarke LE, Attwell D (2012) An astrocyte TRP switch for inhibition. Nat Neurosci 15:3–4CrossRefGoogle Scholar
  137. 137.
    Nesic O, Lee J, Johnson KM, Ye Z, Xu GY, Unabia GC, Wood TG, McAdoo DJ, Westlund KN, Hulsebosch CE, Regino Perez-Polo J (2005) Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J Neurochem 95:998–1014PubMedCrossRefGoogle Scholar
  138. 138.
    Nesic O, Guest JD, Zivadinovic D, Narayana PA, Herrera JJ, Grill RJ, Mokkapati VU, Gelman BB, Lee J (2010) Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 168:1019–1035PubMedCrossRefGoogle Scholar
  139. 139.
    Mulligan SJ, MacVicar BA (2006) VRACs CARVe a path for novel mechanisms of communication in the CNS. Sci STKE 357:pe42Google Scholar
  140. 140.
    Seo HS, Kim HW, Roh DH, Yoon SY, Kwon YB, Han HJ, Chung JM, Beitz AJ, Lee JH (2008) A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia. Pain 139:520–532PubMedCrossRefGoogle Scholar
  141. 141.
    Heinzmann S, McMahon SB (2011) New molecules for the treatment of pain. Curr Opin Support Palliat Care 5:111–115PubMedCrossRefGoogle Scholar
  142. 142.
    Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem Int 57:411–420PubMedCrossRefGoogle Scholar
  143. 143.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediate large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082PubMedCrossRefGoogle Scholar
  144. 144.
    Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538PubMedCrossRefGoogle Scholar
  145. 145.
    Sawynok J (2006) Adenosine and ATP receptors. Handb Exp Pharmacol 177:309–328CrossRefGoogle Scholar
  146. 146.
    Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011PubMedCrossRefGoogle Scholar
  147. 147.
    Choi I-S, Cho J-H, Jang I-S (2011) A1 receptors inhibit glutamate release in rat medullary dorsal horn neurons. NeuroReport 22:711–715PubMedCrossRefGoogle Scholar
  148. 148.
    Zhang X, Wang J, Zhou Q, Xu Y, Pu S, Wu J, Xue Y, Tian Y, Lu J, Jiang W, Du D (2011) Brain-derived neurotrophic factor-activated astrocytes produce mechanical allodynia in neuropathic pain. Neuroscience 199:452–460Google Scholar
  149. 149.
    Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ATPase. Dev Neurosci 18:336–342PubMedCrossRefGoogle Scholar
  150. 150.
    Sun D, Lytle C, O’Donnell ME (1997) IL-6 secreted by astroglial cells regulates Na-K-Cl cotransport in brain microvessel endothelial cells. Am J Physiol 272(6 Pt 1):C1829–C1835PubMedGoogle Scholar
  151. 151.
    Jayakumar AR, Norenberg MD (2010) The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis 25:31–38PubMedCrossRefGoogle Scholar
  152. 152.
    Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • C.-Y. Chiang
    • 1
    Email author
  • B. J. Sessle
    • 1
    • 2
  • J. O. Dostrovsky
    • 1
    • 2
  1. 1.Department of Oral Physiology, Faculty of DentistryUniversity of TorontoTorontoCanada
  2. 2.Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations