Skip to main content
Log in

Metabolic Modeling of Dynamic Brain 13C NMR Multiplet Data: Concepts and Simulations with a Two-Compartment Neuronal-Glial Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metabolic modeling of dynamic 13C labeling curves during infusion of 13C-labeled substrates allows quantitative measurements of metabolic rates in vivo. However metabolic modeling studies performed in the brain to date have only modeled time courses of total isotopic enrichment at individual carbon positions (positional enrichments), not taking advantage of the additional dynamic 13C isotopomer information available from fine-structure multiplets in 13C spectra. Here we introduce a new 13C metabolic modeling approach using the concept of bonded cumulative isotopomers, or bonded cumomers. The direct relationship between bonded cumomers and 13C multiplets enables fitting of the dynamic multiplet data. The potential of this new approach is demonstrated using Monte-Carlo simulations with a brain two-compartment neuronal-glial model. The precision of positional and cumomer approaches are compared for two different metabolic models (with and without glutamine dilution) and for different infusion protocols ([1,6-13C2]glucose, [1,2-13C2]acetate, and double infusion [1,6-13C2]glucose + [1,2-13C2]acetate). In all cases, the bonded cumomer approach gives better precision than the positional approach. In addition, of the three different infusion protocols considered here, the double infusion protocol combined with dynamic bonded cumomer modeling appears the most robust for precise determination of all fluxes in the model. The concepts and simulations introduced in the present study set the foundation for taking full advantage of the available dynamic 13C multiplet data in metabolic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MRS:

Magnetic resonance spectroscopy

ADM:

Atom distribution matrix

TCA cycle:

Tricarboxylic acid cycle

VNT :

Rate of glutamate-glutamine cycle

VTCA(N) :

Rate of neuronal TCA cycle

VTCA(A) :

Rate of astrocytic TCA cycle

VPC :

Rate of pyruvate carboxylase

VX :

Rate of exchange between 2-oxoglutarate and glutamate

VOUT :

Rate of lactate dilution

VDILGLN :

Rate of glutamine dilution

Glu:

Glutamate

Gln:

Glutamine

N:

Neuronal

A:

Astrocytic

References

  1. de Graaf RA, Mason GF, Patel AB, Behar KL, Rothman DL (2003) In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 16(6–7):339–357

    Article  PubMed  Google Scholar 

  2. Gruetter R, Adriany G, Choi I-Y, Henry P-G, Lei H-X, Oz G (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338

    Article  PubMed  CAS  Google Scholar 

  3. Henry PG, Adriany G, Deelchand D, Gruetter R, Marjanska M, Oz G, Seaquist ER, Shestov A, Ugurbil K (2006) In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magn Reson Imaging 24(4):527–539

    Article  PubMed  CAS  Google Scholar 

  4. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22(5):1523–1531

    PubMed  CAS  Google Scholar 

  5. Malloy CR, Sherry AD, Jeffrey FM (1990) Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. Am J Physiol 259(3 Pt 2):H987–H995

    PubMed  CAS  Google Scholar 

  6. Klapa MI, Park SM, Sinskey AJ, Stephanopoulos G (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. Biotechnol Bioeng 62(4):375–391

    Article  PubMed  CAS  Google Scholar 

  7. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3(3):195–206

    Article  PubMed  CAS  Google Scholar 

  8. Carvalho RA, Rodrigues TB, Zhao P, Jeffrey FM, Malloy CR, Sherry AD (2004) A (13)C isotopomer kinetic analysis of cardiac metabolism: influence of altered cytosolic redox and [Ca(2+)](o). Am J Physiol Heart Circ Physiol 287(2):H889–H895

    Article  PubMed  CAS  Google Scholar 

  9. Jeffrey FM, Reshetov A, Storey CJ, Carvalho RA, Sherry AD, Malloy CR (1999) Use of a single (13)C NMR resonance of glutamate for measuring oxygen consumption in tissue. Am J Physiol 277(6 Pt 1):E1111–E1121

    PubMed  CAS  Google Scholar 

  10. Chance MC, Seeholzer SH, Kobayashi K, Williamson JR (1983) Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 258:13785–13794

    PubMed  CAS  Google Scholar 

  11. Henry P-G, Oz G, Provencher S, Gruetter R (2003) Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed 16:400–412

    Article  PubMed  CAS  Google Scholar 

  12. Xu S, Shen J (2006) In vivo dynamic turnover of cerebral 13C isotopomers from [U-13C]glucose. J Magn Reson 182(2):221–228

    Article  PubMed  CAS  Google Scholar 

  13. Muzykantov VS, Shestov AA (1986) Kinetic equations for the redistribution of isotopic molecules due to reversible dissociation. Homoexchange of methane. React Kinet Catal Lett 32(2):307–312

    Article  CAS  Google Scholar 

  14. Wiechert W, Mollney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66(2):69–85

    Article  PubMed  CAS  Google Scholar 

  15. Deelchand DK, Ugurbil K, Henry PG (2006) Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling. Magn Reson Med 55(2):279–286

    Article  PubMed  CAS  Google Scholar 

  16. Muzykantov VS (1980) Distribution and transfer of atoms by elementary reactions. React Kinet Catal Lett 13(4):419–424

    Article  CAS  Google Scholar 

  17. Zupke C, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10(5):489–498

    Article  CAS  Google Scholar 

  18. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831–840

    Article  PubMed  CAS  Google Scholar 

  19. Wiechert W, De Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55(1):101–117

    Article  PubMed  CAS  Google Scholar 

  20. Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol 281:E100–E112

    CAS  Google Scholar 

  21. Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OAC, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240

    Article  PubMed  CAS  Google Scholar 

  22. Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18(14):5225–5233

    PubMed  CAS  Google Scholar 

  23. Deelchand DK, Shestov AA, Koski DM, Ugurbil K, Henry PG (2009) Acetate transport and utilization in the rat brain. J Neurochem 109(Suppl 1):46–54

    Article  PubMed  CAS  Google Scholar 

  24. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9(1):68–86

    Article  PubMed  CAS  Google Scholar 

  25. Shen J, Rothman DL, Behar KL, Xu S (2009) Determination of the glutamate-glutamine cycling flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution. J Cereb Blood Flow Metab 29(1):108–118

    Article  PubMed  CAS  Google Scholar 

  26. Shestov AA, Valette J, Ugurbil K, Henry PG (2007) On the reliability of (13)C metabolic modeling with two-compartment neuronal-glial models. J Neurosci Res 85(15):3294–3303

    Article  PubMed  CAS  Google Scholar 

  27. Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94:2699–2704

    Article  PubMed  CAS  Google Scholar 

  28. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    Article  PubMed  CAS  Google Scholar 

  29. de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci USA 101(34):12700–12705

    Article  PubMed  Google Scholar 

  30. Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24(50):11273–11279

    Article  PubMed  Google Scholar 

  31. Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J Neurochem 100(1):73–86

    Article  PubMed  CAS  Google Scholar 

  32. Deelchand DK, Nelson C, Shestov AA, Ugurbil K, Henry PG (2009) Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2]glucose and [1,2-13C2]acetate. J Magn Reson 196(2):157–163

    Article  PubMed  CAS  Google Scholar 

  33. Taylor A, McLean M, Morris P, Bachelard H (1996) Approaches to studies on neuronal/glial relationships by 13C-MRS analysis. Dev Neurosci 18(5–6):434–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants P41RR008079, P41EB015894, P30NS057091 and R01NS038672 (P.G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Gilles Henry.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestov, A.A., Valette, J., Deelchand, D.K. et al. Metabolic Modeling of Dynamic Brain 13C NMR Multiplet Data: Concepts and Simulations with a Two-Compartment Neuronal-Glial Model. Neurochem Res 37, 2388–2401 (2012). https://doi.org/10.1007/s11064-012-0782-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0782-5

Keywords

Navigation