Lord C, Cook EH, Leventhal BL, Amaral DG (2000) Autism spectrum disorders. Neuron 28:355–363
PubMed
Article
CAS
Google Scholar
Rice C (2009) Prevalence of autism spectrum disorders—Autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveill Summ 58:1–20
Google Scholar
Chauhan A, Chauhan V, Brown WT (eds) (2009) Autism: Oxidative stress, inflammation and immune abnormalities. CRC Press, Taylor and Francis Group, Florida
Google Scholar
Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008) How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology 29:190–201
PubMed
Article
CAS
Google Scholar
Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181
PubMed
Article
CAS
Google Scholar
Kern JK, Jones AM (2006) Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev 9:485–499
PubMed
Article
CAS
Google Scholar
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de WJ (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45
PubMed
Article
CAS
Google Scholar
Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116
PubMed
Article
CAS
Google Scholar
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81
PubMed
Article
CAS
Google Scholar
Juurlink BH, Paterson PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21:309–334
PubMed
CAS
Google Scholar
Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671
PubMed
Article
CAS
Google Scholar
Perry SW, Norman JP, Litzburg A, Gelbard HA (2004) Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res 78:485–492
PubMed
Article
CAS
Google Scholar
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214
PubMed
Article
CAS
Google Scholar
Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706
PubMed
Article
CAS
Google Scholar
Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314
PubMed
Article
CAS
Google Scholar
Ghezzi P (2011) Role of glutathione in immunity and inflammation in the lung. Int J Gen Med 4:105–113
PubMed
CAS
Google Scholar
Haddad JJ, Harb HL (2005) L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 42:987–1014
PubMed
Article
CAS
Google Scholar
Martin HL, Teismann P (2009) Glutathione—a review on its role and significance in Parkinson’s disease. FASEB J 23:3263–3272
PubMed
Article
CAS
Google Scholar
Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161:326–333
PubMed
Article
Google Scholar
Kinney DK, Munir KM, Crowley DJ, Miller AM (2008) Prenatal stress and risk for autism. Neurosci Biobehav Rev 32:1519–1532
PubMed
Article
Google Scholar
Miller MT, Stromland K, Ventura L, Johansson M, Bandim JM, Gillberg C (2005) Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int J Dev Neurosci 23:201–219
PubMed
Article
Google Scholar
Ono H, Sakamoto A, Sakura N (2001) Plasma total glutathione concentrations in healthy pediatric and adult subjects. Clin Chim Acta 312:227–229
PubMed
Article
CAS
Google Scholar
Erden-Inal M, Sunal E, Kanbak G (2002) Age-related changes in the glutathione redox system. Cell Biochem Funct 20:61–66
PubMed
Article
CAS
Google Scholar
Akerboom TP, Bilzer M, Sies H (1982) The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver. J Biol Chem 257:4248–4252
PubMed
CAS
Google Scholar
Slivka A, Spina MB, Cohen G (1987) Reduced and oxidized glutathione in human and monkey brain. Neurosci Lett 74:112–118
PubMed
Article
CAS
Google Scholar
Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sci 75:2539–2549
PubMed
Article
CAS
Google Scholar
Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, Meram I (2004) Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 254:143–147
PubMed
Google Scholar
Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A (2011) Evaluation of oxidative otress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res 143:58–65
PubMed
Article
CAS
Google Scholar
Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC (2005) Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73:379–384
PubMed
Article
CAS
Google Scholar
Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117:209–220
PubMed
Article
CAS
Google Scholar
Chauhan A, Chauhan V (2012) Brain oxidative stress and mitochondrial abnormalities in autism. In: Fatemi SH et al. Consensus paper: pathological role of cerebellum in autism. Cerebellum. doi:10.007/s12311-012-0355-9
López-Hurtado E, Prieto JJ (2008) A microscopic study of language-related cortex in autism. Am J Biochem Biotech 4:130–145
Article
Google Scholar
Evans TA, Siedlak SL, Lu L, Fu X, Wang Z, McGinnis WR, Fakhoury E, Castellani RJ, Hazen SL, Walsh WJ, Lewis AT, Salomon RG, Smith MA, Perry G, Zhu X (2008) The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biochem Biotech 4:61–72
Article
CAS
Google Scholar
Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 8:366–372
PubMed
Article
CAS
Google Scholar
Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67:341–343
PubMed
Article
CAS
Google Scholar
Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W (2011) Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr 11:111
PubMed
Article
CAS
Google Scholar
Al Gadani Y, El Ansary A, Attas O, Al Ayadhi L (2009) Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42:1032–1040
PubMed
Article
CAS
Google Scholar
Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR (2009) A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 34:386–393
PubMed
Article
CAS
Google Scholar
Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 8:34
Article
Google Scholar
James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141B:947–956
PubMed
Article
CAS
Google Scholar
Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230
PubMed
Article
CAS
Google Scholar
Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164
PubMed
Article
CAS
Google Scholar
Santori G, Domenicotti C, Bellocchio A, Pronzato MA, Marinari UM, Cottalasso D (1997) Different efficacy of iodoacetic acid and N-ethylmaleimide in high-performance liquid chromatographic measurement of liver glutathione. J Chromatogr B Biomed Sci Appl 695:427–433
PubMed
Article
CAS
Google Scholar
Loughlin AF, Skiles GL, Alberts DW, Schaefer WH (2001) An ion exchange liquid chromatography/mass spectrometry method for the determination of reduced and oxidized glutathione and glutathione conjugates in hepatocytes. J Pharm Biomed Anal 26:131–142
PubMed
Article
CAS
Google Scholar
Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, Deppen P, Preisig M, Ruiz V, Steullet P, Tosic M, Werge T, Cuenod M, Do KQ (2007) Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci USA 104:16621–16626
PubMed
Article
CAS
Google Scholar
Yao JK, Leonard S, Reddy R (2006) Altered glutathione redox state in schizophrenia. Dis Markers 22:83–93
PubMed
CAS
Google Scholar
Andreazza AC, Kauer-Sant’Anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144
PubMed
Article
CAS
Google Scholar
Bermejo P, Martin-Aragon S, Benedi J, Susin C, Felici E, Gil P, Ribera JM, Villar AM (2008) Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from mild cognitive impairment. Free Radic Res 42:162–170
PubMed
Article
CAS
Google Scholar
Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–238
PubMed
Article
CAS
Google Scholar
Haas RH (2010) Autism and mitochondrial disease. Dev Disabil Res Rev 16:144–153
PubMed
Article
Google Scholar
Rossignol DA, Frye RE (2011) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17:290–314
PubMed
Article
Google Scholar
Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700
PubMed
Article
CAS
Google Scholar
Ayer A, Tan SX, Grant CM, Meyer AJ, Dawes IW, Perrone GG (2010) The critical role of glutathione in maintenance of the mitochondrial genome. Free Radic Biol Med 49:1956–1968
PubMed
Article
CAS
Google Scholar
Ji L, Chauhan A, Brown WT, Chauhan V (2009) Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci 85:788–793
PubMed
Article
CAS
Google Scholar
Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108:4–18
PubMed
Article
CAS
Google Scholar
Wells PG, Bhuller Y, Chen CS, Jeng W, Kasapinovic S, Kennedy JC, Kim PM, Laposa RR, McCallum GP, Nicol CJ, Parman T, Wiley MJ, Wong AW (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207:354–366
PubMed
Article
Google Scholar
Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–1036
PubMed
Article
CAS
Google Scholar
Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7:406–416
PubMed
Article
CAS
Google Scholar
Casanova MF (2007) The neuropathology of autism. Brain Pathol 17:422–433
PubMed
Article
Google Scholar
Kern JK (2003) Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev 25:377–382
PubMed
Article
Google Scholar
Araghi-Niknam M, Fatemi SH (2003) Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol 23:945–952
PubMed
Article
CAS
Google Scholar
Goines P, Haapanen L, Boyce R, Duncanson P, Braunschweig D, Delwiche L, Hansen R, Hertz-Picciotto I, Ashwood P, Van de WJ (2011) Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun 25:514–523
PubMed
Article
CAS
Google Scholar
Hetzler BE, Griffin JL (1981) Infantile autism and the temporal lobe of the brain. J Autism Dev Disord 11:317–330
PubMed
Article
CAS
Google Scholar
Zilbovicius M, Boddaert N, Belin P, Poline JB, Remy P, Mangin JF, Thivard L, Barthelemy C, Samson Y (2000) Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 157:1988–1993
PubMed
Article
CAS
Google Scholar
Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, Johnson M, Lu J, Provencal SL, McMahon W, Lainhart JE (2007) Superior temporal gyrus, language function, and autism. Dev Neuropsychol 31:217–238
PubMed
Article
Google Scholar
Gage NM, Juranek J, Filipek PA, Osann K, Flodman P, Isenberg AL, Spence MA (2009) Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: an MRI investigation. J Neurodev Disord 1:205–214
PubMed
Article
Google Scholar
Jou RJ, Minshew NJ, Keshavan MS, Vitale MP, Hardan AY (2010) Enlarged right superior temporal gyrus in children and adolescents with autism. Brain Res 1360:205–212
PubMed
Article
CAS
Google Scholar
Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30:303–311
PubMed
Article
CAS
Google Scholar
van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999
PubMed
Article
Google Scholar
Bolte S, Hubl D, Feineis-Matthews S, Prvulovic D, Dierks T, Poustka F (2006) Facial affect recognition training in autism: can we animate the fusiform gyrus? Behav Neurosci 120:211–216
PubMed
Article
Google Scholar
Pierce K, Haist F, Sedaghat F, Courchesne E (2004) The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain 127:2703–2716
PubMed
Article
Google Scholar