Skip to main content
Log in

Long-Term Methionine Exposure Induces Memory Impairment on Inhibitory Avoidance Task and Alters Acetylcholinesterase Activity and Expression in Zebrafish (Danio rerio)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hypermethioninemic patients exhibit a variable degree of neurological dysfunction. However, the mechanisms involved in these alterations have not been completely clarified. Cholinergic system has been implicated in many physiological processes, including cognitive performances, as learning, and memory. Parameters of cholinergic signaling have already been characterized in zebrafish brain. Since zebrafish is a small freshwater teleost which is a vertebrate model for modeling behavioral and functional parameters related to human pathogenesis and for clinical treatment screenings, in the present study we investigated the effects of short- and long-term methionine exposure on cognitive impairment, AChE activity and gene expression in zebrafish. For the studies, animals were exposed at two methionine concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). We observed a significant increase in AChE activity of zebrafish brain membranes after long-term methionine exposure at 3.0 mM. However, AChE gene expression decreased significantly in both concentrations tested after 7 days of treatment, suggesting that post-translational events are involved in the enhancement of AChE activity. Methionine treatment induces memory deficit in zebrafish after long-term exposure to this amino acid, which could be related, at least in part, with cognitive impairment observed in hypermethioninemia. Therefore, the results here presented raise a new perspective to use the zebrafish as a complementary vertebrate model for studying inborn errors of metabolism, which may help to better understand the pathophysiology of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benevenga NJ, Steele RD (1984) Adverse effects of excessive consumption of amino acids. Annu Rev Nutr 4:157–181

    Article  PubMed  CAS  Google Scholar 

  2. Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2007–2056

    Google Scholar 

  3. Garlick PJ (2006) Toxicity of methionine in humans. J Nutr 136:1722S–1725S (Review)

    PubMed  CAS  Google Scholar 

  4. Mudd SH (2011) Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genetic C Semin Med Genet 157:3–32

    Article  CAS  Google Scholar 

  5. Mudd SH, Levy HL, Tangerman A, Boujet C, Buist N, Davidson-Mundt A, Hudgins L, Oyanagi K, Nagao M, Wilson WG (1995) Isolated persistent hypermethioninemia. Am J Hum Genet 57:882–892

    PubMed  CAS  Google Scholar 

  6. Chamberlin ME, Ubagai T, Mudd SH, Wilson WG, Leonard JV, Chou JY (1996) Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest 98:1021–1027

    Article  PubMed  CAS  Google Scholar 

  7. Mudd SH, Jenden DJ, Capdevila A, Roch M, Levy HL, Wagner C (2000) Isolated hypermethioninemia: Measurements of S-adenosylmethionine and choline. Metabolism 49:1542–1547

    Article  PubMed  CAS  Google Scholar 

  8. Yaghmai R, Kashani AH, Geraghty MT, Okoh J, Pomper M, Tangerman A, Wagner C, Stabler SP, Allen RH, Mudd SH, Braverman N (2002) Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine beta-synthase (CBS) deficiency. Am J Med Genet 108:57–63

    Article  PubMed  Google Scholar 

  9. Stefanello FM, Matté C, Scherer EB, Wannmacher CM, Wajner M, Wyse ATS (2007) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4

    Article  PubMed  CAS  Google Scholar 

  10. Stefanello FM, Scherer EB, Kurek AG, Mattos CB, Wyse ATS (2007) Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+), K (+)-ATPase activity in hippocampus of rats. Metab Brain Dis 22:172–182

    Article  PubMed  CAS  Google Scholar 

  11. Stefanello FM, Ferreira AG, Pereira TC, da Cunha MJ, Bonan CD, Bogo MR, Wyse ATS (2011) Acute and chronic hypermethioninemia alter Na+, K(+)-ATPase activity in rat hippocampus: prevention by antioxidants. Int J Dev Neurosci 29:483–488

    Article  PubMed  CAS  Google Scholar 

  12. Stefanello FM, Monteiro SC, Matté C, Scherer EB, Netto CA, Wyse ATS (2007) Hypermethioninemia increases cerebral acetylcholinesterase activity and impairs memory in rats. Neurochem Res 32:1868–1874

    Article  PubMed  CAS  Google Scholar 

  13. Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  14. Blokland A (1996) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 21:285–300

    Article  Google Scholar 

  15. Fodale V, Quattrone D, Trecroci C, Caminiti V, Santamaria LB (2006) Alzheimer’s disease and anaesthesia: implications for the central cholinergic system. Br J Anaesth 97:445–452

    Article  PubMed  CAS  Google Scholar 

  16. Martorana A, Esposito Z, Koch G (2010) Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neurosci Ther 16:235–245

    PubMed  CAS  Google Scholar 

  17. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  PubMed  CAS  Google Scholar 

  18. Soreq H, Seidman S (2001) Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  19. Lieschke GJ, Currie PD (2000) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  Google Scholar 

  20. Grunwald JD, Eisen JS (2001) Timeline: headwaters of the zebrafish-emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  Google Scholar 

  21. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  PubMed  CAS  Google Scholar 

  22. Senger MR, Rosemberg DB, Rico EP, Arizi MB, Dias RD, Bogo MR, Bonan CD (2006) In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in zebraWsh (Danio rerio) brain. Toxicol In Vitro 20:954–958

    Article  PubMed  CAS  Google Scholar 

  23. Rico EP, Rosemberg DB, Dias RD, Bogo MR, Bonan CD (2007) Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain. Toxicol Lett 174:25–30

    Article  PubMed  CAS  Google Scholar 

  24. Rosemberg DB, da Rocha RF, Rico EP, Zanotto-Filho A, Dias RD, Bogo MR, Bonan CD, Moreira JCF, Klamt F, Souza DO (2010) Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebrafish brain. Neuroscience 171:683–692

    Article  PubMed  CAS  Google Scholar 

  25. Richetti SK, Blank M, Capiottia KM, Piato AL, Bogo MR, Vianna MR, Bonan CD (2011) Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behavi Brain Res 217:10–15

    Article  CAS  Google Scholar 

  26. Detrich WH, Westerfield M, Zon LI (eds) (1999) The zebrafish: biology-methods in cell biology, vol 59–60. Academic Press, San Diego

    Google Scholar 

  27. Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33:461–468

    Article  PubMed  Google Scholar 

  28. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44

    Article  PubMed  CAS  Google Scholar 

  29. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    Article  PubMed  CAS  Google Scholar 

  30. Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R (2004) Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 474:75–107

    Article  PubMed  Google Scholar 

  31. Rico EP, Rosemberg DB, Senger MR, Arizi MB, Bernardi GF, Dias RD, Bogo MR, Bonan CD (2006) Methanol alters ecto-nucleotidases and acetylcholinesterase in zebrafish brain. Neurotoxicol Teratol 28:489–496

    Article  PubMed  CAS  Google Scholar 

  32. Bertrand C, Chatonnet A, Takke C, Yan Y, Postlethwait J, Toutant JP, Cousin X (2001) Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7. J Biol Chem 276:464–474

    Article  PubMed  CAS  Google Scholar 

  33. Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns 3:747–754

    Article  PubMed  CAS  Google Scholar 

  34. Westerfield M (2007) The zebrafish book, 5th edn. University of Oregon Press, Eugene

    Google Scholar 

  35. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin (Shanghai) 39:384–390

    Article  CAS  Google Scholar 

  38. Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782

    Article  PubMed  CAS  Google Scholar 

  39. Blank M, Guerim LD, Cordeiro RF, Vianna MRM (2009) A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 92:529–534

    Article  PubMed  CAS  Google Scholar 

  40. Nedeljkovic N, Banjac A, Horvat A, Stojiljkovic M, Nikezic G (2005) Developmental profile of NTPDase activity in synaptic plasma membranes isolated from rat cerebral cortex. Int J Dev Neurosci 23:45–51

    Article  PubMed  CAS  Google Scholar 

  41. Salgado H, Santos-Zavaleta A, Gama-Castro S, Millan-Zarate D, Diaz-Peredo E, Sanchez-Solano F, Perez-Rueda E, Bonavides-Martinez C, Collado-Vides J (2001) RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res 29:72–74

    Article  PubMed  CAS  Google Scholar 

  42. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 1:334–337

    Google Scholar 

  43. Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80:178–193

    Article  PubMed  CAS  Google Scholar 

  44. Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644 (Review)

    Article  PubMed  CAS  Google Scholar 

  45. Pepeu G, Giovannini MG (2010) Cholinesterase inhibitors and memory. Chem Biol Interact 187:403–408

    Article  PubMed  CAS  Google Scholar 

  46. Stefanello FM, Kreutz F, Scherer EB, Breier AC, Vianna LP, Trindade VM, Wyse ATS (2007) Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 25:473–477

    Article  PubMed  CAS  Google Scholar 

  47. Tettamanti G, Riboni L (1994) Ganglioside turnover and neural cell function: a new perspective. Prog Brain Res 101:77–100

    Article  PubMed  CAS  Google Scholar 

  48. Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62:2283–2294

    Article  PubMed  CAS  Google Scholar 

  49. Rubinstein AL (2003) Zebrafish: from disease modelling to drug discovery. Cur Opin Drug Discov Devel 6:218–223

    CAS  Google Scholar 

  50. Best JD, Alderton WK (2008) Zebrafish: An in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat 4:567–576

    Article  PubMed  CAS  Google Scholar 

  51. Miklosi A, Andrew RJ (2006) The zebrafish as a model for behavioral studies. Zebrafish 3:227–234

    Article  PubMed  Google Scholar 

  52. Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15:2609–2622

    Article  PubMed  CAS  Google Scholar 

  53. Goldsmith P (2004) Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol 4:504–512

    Article  PubMed  CAS  Google Scholar 

  54. Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3:63–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Cenci Vuaden or Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuaden, F.C., Savio, L.E.B., Piato, A.L. et al. Long-Term Methionine Exposure Induces Memory Impairment on Inhibitory Avoidance Task and Alters Acetylcholinesterase Activity and Expression in Zebrafish (Danio rerio). Neurochem Res 37, 1545–1553 (2012). https://doi.org/10.1007/s11064-012-0749-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0749-6

Keywords

Navigation