Skip to main content

Advertisement

Log in

The Hypothesis on Function of Glycosphingolipids and ABO Blood Groups Revisited

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Twenty-five years ago the author proposed new ideas of glycoprotein (GPs) and glycosphingolipid (GSLs) functions at the cell membrane. The GPs, apart from their glycan carrying capacity, were assumed to have specific, protein associated, functions. In contrast, GSLs such as those of globo and neolacto/lacto series, were considered to be energetically cheap membrane packing substances, filling in membrane spaces not covered with functional GPs. The terminal carbohydrate structures of the neolacto/lacto GSLs, i.e., sialic acid residues and ABH glycotopes, were postulated to have either regulatory or protective functions, respectively. A special active role was ascribed to terminal β-galactosyl residues of GSLs and GPs. Gangliosides were considered to be functional GSLs. In the present review the author discusses these old ideas in context of the contemporary knowledge and comes to the conclusion that they have not aged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Koscielak J (1986) A hypothesis on the biological role of ABH, Lewis and P blood group determinant structures in glycosphingolipids and glycoproteins. Glycoconj J 3:95–108

    Article  CAS  Google Scholar 

  2. Kościelak J (1986) A possible biological function of carbohydrate structures which are typical of erythrocytes. Med Biol 64:331–334

    PubMed  Google Scholar 

  3. Ledeen RW (1978) Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct 8:1–17

    Article  PubMed  CAS  Google Scholar 

  4. Ledeen RW (1984) Biology of gangliosides: neuritogenic and neurothrophic properties. J Neurosci Res 12:147–159

    Article  PubMed  CAS  Google Scholar 

  5. Wu G, Xie H, Lu ZH, Ledeen RW (2009) Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci USA 106:10829–10834

    Article  PubMed  CAS  Google Scholar 

  6. Wang J, Lu Z-H, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-Linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalitis. J Immunol 182:4036–4045

    Article  PubMed  CAS  Google Scholar 

  7. Yang Z, Bergström J, Karlsson K-A (1994) Glycoproteins with Galα4Gal are absent from human erythrocyte membranes, indicating that GSLs are the sole carriers of blood group P activities. J Biol Chem 269:14620–14624

    PubMed  CAS  Google Scholar 

  8. Hakomori SI (2008) Structure and function of glycosphingolipids: recollections and future trends. Biochim Biophys Acta 1780:325–346

    Article  PubMed  CAS  Google Scholar 

  9. Fenderson BA, Andrews PW, Nudelman E et al (1987) Glycolipid core structure switching from globo- to lacto- and ganglio- series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol 122:21–34

    Article  PubMed  CAS  Google Scholar 

  10. Draper JS, Pigott C, Thomson JA (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–252

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa Y, Gasa S, Minami R, Makita A (1987) Characterization of neutral glycosphingolipids from fetal human brain: evidence for stage-specific expression of the globo, ganglio, and neolacto series in the central nervous system. J Biochem 101:1369–1375

    PubMed  CAS  Google Scholar 

  12. Keusch JJ, Manzella SM, Nyame KA et al (2000) Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predict a family of α1,4-glycosyltransferases conserved in plants, insects and mammals. J Biol Chem 275:25315–25321

    Article  PubMed  CAS  Google Scholar 

  13. Ariga T, Yu RK (1998) The role of globo-series glycolipids in neuronal cell differentiation-a review. Neurochem Res 23:291–303

    Article  PubMed  CAS  Google Scholar 

  14. Chatterjee S, Sweeley CC, Velicer LF (1975) Glycosphingolipids of human KB cells grown in monolayer, suspension and synchronized cultures. J Biol Chem 250:61–66

    PubMed  CAS  Google Scholar 

  15. Song Y, Withers DA, Hakomori SI (1998) Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbobohydrate-carbohydrate interaction, initiated signal transduction and induced enhanced activity of transcription factors AP1 and Creb. J Biol Chem 273:2517–2525

    Article  PubMed  CAS  Google Scholar 

  16. Mangeney M, Lingwood CA, Taga S et al (1993) Apoptosis induced in Burkitt’s lymphoma cells via Gb3/CD77, a glycolipid antigen. Cancer Res 53:5314–5319

    PubMed  CAS  Google Scholar 

  17. Taga S, Carlier K, Mishai Z et al (1997) Intracellular signaling events in CD77-mediated apoptosis of Burkitt’s lymphoma cells. Blood 90:2757–2767

    PubMed  CAS  Google Scholar 

  18. Szulman AE (1980) ABH blood groups and development. Curr Top Dev Biol 14:127–145

    Article  PubMed  CAS  Google Scholar 

  19. Southcott MJG, Tanner MJA, Anstee DJ (1999) The expression of human blood group antigens during erythropoieisis in a cell culture system. Blood 93:4425–4435

    PubMed  CAS  Google Scholar 

  20. Daniels G, Green C (2000) Expression of red cell surface antigens during erythropoiesis. Vox Sang 78(Suppl 2):149–153

    PubMed  CAS  Google Scholar 

  21. Zdebska E, Koscielak J (1999) A single sample method for determination of carbohydrate and protein contents of glycoprotein bands separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 275:171–179

    Article  PubMed  CAS  Google Scholar 

  22. Wenk J, Andrews PW, Casper J et al (1994) Glycolipids of germ cell tumors: extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells. Int J Cancer 58:108–115

    Article  PubMed  CAS  Google Scholar 

  23. Kovbasnjuk O, Mourtazina R, Balbakov B et al (2005) The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc Natl Acad Sci USA 102:19087–19092

    Article  PubMed  CAS  Google Scholar 

  24. Nicholson JM, Duesberg P (2009) On the karyotypic origin and evolution of cancer cells. Cancer Genet Cytogenet 194:96–110

    Article  PubMed  CAS  Google Scholar 

  25. Yin J, Miyazaki K, Shaner RL et al (2010) Altered sphingolipid metabolism induced by tumor hypoxia—new vistas in glycolipid tumor markers. FEBS Lett 584:1872–1878

    Article  PubMed  CAS  Google Scholar 

  26. Kuemmel A, Single K, Bittinger F et al (2007) The prognostic impact of blood group related antigen Lewis y and the ABH blood groups in resected non-small lung cancer. Tumour Biol 28:340–349

    Article  PubMed  CAS  Google Scholar 

  27. Tsuboi K, Asao T, Ide M et al (2007) Alpha1,2fucosylation is a superior predictor of postoperative prognosis for colorectal cancer with A, B, or sialyl Lewis x antigen generated within colorectal tumor tissues. Ann Surg Oncol 14:1880–1889

    Article  PubMed  Google Scholar 

  28. Ichikawa D, Handa K, Withers DA, Hakomori SI (1997) Histo-blood Group A/B versus H status of human carcinoma cells was correlated with haptotactic cell motility: approach with A and B gene transfection. Cancer Res 57:3092

    PubMed  CAS  Google Scholar 

  29. Cummings R, Liu F-T (2009) Galectins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of Glycobiology, 2edn. Cold Spring Harbor, New York, pp 475–487

    Google Scholar 

  30. Di Lella D, Sundblad V, Cerliani JP et al (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry Aug 26 (Epub ahead of print)

  31. Zhuo Y, Bellis SL (2011) Emerging role of apha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 286:5935–5941

    Article  PubMed  CAS  Google Scholar 

  32. Stowell SR, Arthur CM, Mehta P et al (2008) Galectin-1,-2, and-3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283:10109–10123

    Article  PubMed  CAS  Google Scholar 

  33. Stowell SR, Arthur CM, Dias-Baruffi M et al (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16:295–301

    Article  PubMed  CAS  Google Scholar 

  34. Than NG, Romero R, Goodman M (2009) A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. PNAS 106:9731–9736

    Article  PubMed  CAS  Google Scholar 

  35. Al-Awquati Q (2011) Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu Rev Physiol 73:401–412

    Article  CAS  Google Scholar 

  36. Davicino RC, Elicabe RJ, Di Genaro MS, Rabinovich GA (2011) Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int Immunopharmacol. May 18 (Epub ahead of print)

  37. Than NG, Romero R, Meiri H et al (2011) Maternal ABO blood groups and the risk of pregnancy complications. PLoS ONE 6(7):e21564. doi:10.1371/journa.pone.0021564

    Article  PubMed  CAS  Google Scholar 

  38. Hakomori S, Murakami WT (1968) Glycolipids of hamster fibroblasta and derived malignant-transformed cells. Proc Natl Acad Sci USA 59:254–261

    Article  PubMed  CAS  Google Scholar 

  39. Ogura K, Sweeley CC (1992) Mitogenic effects of bacterial neuraminidase and lactosylceramide on human culture fibroblasts. Exp Cell Res 199:169–173

    Article  PubMed  CAS  Google Scholar 

  40. Chatterjee S (1991) Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem Biophys Res Com 181:554–561

    Article  PubMed  CAS  Google Scholar 

  41. Chatterjee S, Pandey A (2008) The Yin and Yang of lactosylceramide metabolism: implication in cell function. Biochem Biophys Acta 1780:370–382

    Article  PubMed  CAS  Google Scholar 

  42. Bietrix F, Lombardo E, van Roomen CP et al (2010) Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/-mice. Thromb Vasc Bio 30:931–937

    Article  CAS  Google Scholar 

  43. Hojjati MR, Li Z, Zhou H et al (2005) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient Mice. J Biol Chem 280:10284–10289

    Article  PubMed  CAS  Google Scholar 

  44. Mu H, Wang X, Wang H et al (2009) Lactosylceramide promote cell migration through activation of ERK1/2 in human aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 297:H400–H408

    Article  PubMed  CAS  Google Scholar 

  45. Sonnino S, Prinetti A, Nakayama H et al (2009) Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutropils. Glycoconj J 26:615–621

    Article  PubMed  CAS  Google Scholar 

  46. Iwabuchi K, Nakayama H, Iwahara C, Takamori K (2010) Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett 584:1642–1652

    Article  PubMed  CAS  Google Scholar 

  47. Monti E, Bonten E, D’Azzo A et al (2010) Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem 64:403–478

    Article  PubMed  CAS  Google Scholar 

  48. Duca L, Blanchevoye C, Cantarelli B et al (2007) The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem 282:12484–12491

    Article  PubMed  CAS  Google Scholar 

  49. Rusciani A, Duca L, Sartelet H et al (2010) Elastin peptides signaling relies on neuraminidase-1-dependent lactosylceramide generation. PLoS ONE 5:e14010

    Article  PubMed  CAS  Google Scholar 

  50. Hinek A, Bodnaruk A, Bunda S et al (2008) Neuraminidase-1, a subunit of the cell surface elastin receptor, desialylates and functionally inactivates adjacent receptors interacting with the mitogenic growth factors PDGF-BB and IGF-2. Am J Pathol 173:1042–1056

    Article  PubMed  CAS  Google Scholar 

  51. Anastasia L, Papini N, Colazzo F et al (2008) NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis. J Bio Chem 283:36266–36271

    Article  CAS  Google Scholar 

  52. Varki A, Crocker R (2009) I-type lectins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of Glycobiology, 2edn. Cold Spring Harbor, New York, pp 459–474

    Google Scholar 

  53. Liu Y, Chen G-Y, Zheng P (2009) CD24-Siglex G/10 discriminates danger-from pathogen-associates molecular patterns. Trends Immunol 30:557–561

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Neumann H (2010) Alleviation of neurotoxicity by microglial human siglec-11. Neuroscience 30:3482–3488

    Article  PubMed  CAS  Google Scholar 

  55. Dam TK, Brewer CF (2010) Lectins as pattern recognition molecules: The effect of epitope density in innate immunity. Glycobiology 20:270–279

    Article  PubMed  CAS  Google Scholar 

  56. Cao H, Crocker R (2010) Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation. Immunology 132:18–26

    Article  PubMed  CAS  Google Scholar 

  57. Eden J, Leffler H (1980) Glycosphingolipids of human urinary tract epithelial cells as possible receptors for adhering Escherichia coli bacteria. Scand J Infect Dis Suppl 24:144–149

    PubMed  Google Scholar 

  58. Stapleton A, Nudelman E, Clausen H et al (1992) Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J Clin Invest 90:965–972

    Article  PubMed  CAS  Google Scholar 

  59. Anstee DJ (2010) The relationship between blood group and disease. Blood 115:4635–4643

    Article  PubMed  CAS  Google Scholar 

  60. Higgins MA, Whitworth GE, El Warry N et al (2009) Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside. J Biol Chem 284:26161–26173

    Article  PubMed  CAS  Google Scholar 

  61. Higgins MA, Ficko-Blean E, Meloncelli P et al (2011) The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolysing enzymes. J Mol Biol 411:1017–1036

    Article  PubMed  CAS  Google Scholar 

  62. Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–486

    Article  PubMed  CAS  Google Scholar 

  63. Fujitani N, Liu Y, Okamura T, Kimura H (2000) Distribution of H type 1–4 chains of the ABO(H) system in different cell types of human respiratory epithelium. J Histochem Cytochem 48:1649–1655

    Article  PubMed  CAS  Google Scholar 

  64. Limoli DH, Sladek JA, Fuller LA et al (2011) BgaA acts as an adhesin to mediate attachment of some pneumococcal strains to human epitlelial cells. Microbiology 157:2369–2381

    Article  PubMed  CAS  Google Scholar 

  65. Anderson KM, Ashida H, Maskos H et al (2005) A clostridial endo-beta-galactosidase that cleaves both A nd B glycotopes: the first member of a new glycoside hydrolase family, GH98. J Biol Chem 280:7720–7728

    Article  PubMed  CAS  Google Scholar 

  66. Hoskins LC, Aqustines M, McKee WB et al (1985) Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75:944–953

    Article  PubMed  CAS  Google Scholar 

  67. Magalhäes A, Reis CA (2010) Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz J Med Biol Res 43:611–618

    Article  PubMed  Google Scholar 

  68. Edgren G, Hjalgrim H, Rostgaard K et al (2010) Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am J Epidemiol 172:1280–1285

    Article  PubMed  Google Scholar 

  69. Aird I, Bentall HH, Megigan JA, Roberts JA (1954) The blood groups in relation to peptic ulceration and carcinoma of colon, rectum, breast, and bronchus; an association between the ABO groups and peptic ulceration. Brit Med J 2:315–321

    Article  PubMed  CAS  Google Scholar 

  70. Aspholm-Hurtig M, Dailide G, Lahmann M et al (2004) Functional adaptation of BabA, the H. pylori ABO blood group A antigen binding adhesin. Science 305:519–522

    Article  PubMed  CAS  Google Scholar 

  71. Marcos NT, Magalhaes A, Ferreira B et al (2008) Helicobacter pylori induces beta3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x. J CIin Invest S 118:2325–2336

    CAS  Google Scholar 

  72. Mahdavi J, Sondén B, Hurtig M et al (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578

    Article  PubMed  CAS  Google Scholar 

  73. Liu TW, Ho CW, Huang HH et al (2009) Role for α-fucosidase in the control of Helicobacter pylori-infected gastric cancer cells. Proc Natl Acad Sci USA 106:14581–14586

    Article  PubMed  CAS  Google Scholar 

  74. Roberts JA (1957) Blood groups and susceptibility to disease: a review. Brit J prev soc med 11:107–125

    CAS  Google Scholar 

  75. Polk DB, Peak RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10:403–414

    Article  PubMed  CAS  Google Scholar 

  76. Fox JG, Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Invest 117:60–69

    Article  PubMed  CAS  Google Scholar 

  77. Toller IM, Neelsen KJ, Steger M et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA 108:14944–14949

    Article  PubMed  CAS  Google Scholar 

  78. Alkout AM, Blackwell CC, Weir DM (2000) Increased inflammatory responses of persons of blood group O to Helicobacter pylori. J Infect Dis 181:1364–1369

    Article  PubMed  CAS  Google Scholar 

  79. Sayi A, Kohler E, Hitzler I et al (2009) The CD4+ Th1 cell-mediated IFN-γ response to Helicobacter infection is essential for clearance of the bacteria, induction of preneoplastic changes in gastric mucosa. J Immunol 182:7085–7101

    Article  PubMed  CAS  Google Scholar 

  80. Tu SP, Quante M, Bhagat G et al (2011) IFN-γ inhibits gastric carcinogenesis by inducing epithelial autophagy and T-cell apoptosis. Cancer Res 71:4247–4259

    Article  PubMed  CAS  Google Scholar 

  81. Rowe JA, Handel IG, Thera MA et al (2007) Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci USA 104:17471–17476

    Article  PubMed  CAS  Google Scholar 

  82. Jiang L, Gaur D, Mu J et al (2011) Evidence for erythrocyte-binding antigen 175 as a component of a ligand-blocking blood-stage malaria vaccine. Proc Natl Acad. Sci USA 108:7553–7557

    Article  PubMed  CAS  Google Scholar 

  83. Cohen M, Hurtado-Ziola N, Varki A (2009) ABO blood group glycans modulate sialic acid recognition on erythrocytes. Blood 114:3668–3676

    Article  PubMed  CAS  Google Scholar 

  84. Shirato H (2011) Norovirus and histo-blood group antigens. Jpn Infect Dis 64:95–103

    CAS  Google Scholar 

  85. McGuckin MA, Lindén SK, Sutton P, Florin T (2011) Mucin dynamics and enteric pathogens. Nat Rev 9:265–278

    Article  CAS  Google Scholar 

  86. Sonnenburg JL, Xu J, Leip DD et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–1959

    Article  PubMed  CAS  Google Scholar 

  87. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  PubMed  CAS  Google Scholar 

  88. Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. doi:10.1038/nature10213

    Article  PubMed  CAS  Google Scholar 

  89. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon Jl (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  PubMed  CAS  Google Scholar 

  90. Perry GH, Dominy NJ, Claw KG et al (2007) Diet and the evolution of human amylase gene copy number variations. Nat Genet 39:1256–1260

    Article  PubMed  CAS  Google Scholar 

  91. Pusztai A (1993) Dietary lectins are metabolic signals for the gut and modulate immune and hormone functions. Eur J Clin Nutr 47:691–699

    PubMed  CAS  Google Scholar 

  92. Santidrián S, de Moya CC, Grant G et al (2003) Local (gut) and systemic metabolism of rats is altered by consumption of raw bean (Phaseolus vulgaris L var athropurpurea). Br J Nutr 89:311–319

    Article  PubMed  CAS  Google Scholar 

  93. Ramadass B, Dokladny K, Moseley PL et al (2010) Sucrose co-administration reduces the toxic effect of lectin on gut permeability and intestinal bacterial colonization. Dig Dis Sci 55:2778–2784

    Article  PubMed  CAS  Google Scholar 

  94. Nachbar MS, Oppenheim JD (1980) Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. Am J Clin Nutr 33:2338–2345

    PubMed  CAS  Google Scholar 

  95. Bajaj M, Hinge A, Limaye LS et al (2011) Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism. Glycobiology 21:521–529

    Article  PubMed  CAS  Google Scholar 

  96. Yamashita T, Wada R, Sasaki T et al (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    Article  PubMed  CAS  Google Scholar 

  97. Okuda T, Tokuda N, Numata S et al (2006) Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281:10230–10235

    Article  PubMed  CAS  Google Scholar 

  98. Biellman F, Hülsmeier AJ, Zhou D et al (2008) The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev Biol 8:1–10

    Article  CAS  Google Scholar 

  99. Kuan CT, Chang J, Mansson JE et al (2010) Multiple phenotypic changes in mice after knockout of the B3gnt5, encoding Lc3 synthase—a key enzyme in lacto-neolacto ganglioside synthesis. BMC Dev Biol 10:114. doi:10.1186/1471-213X-10-114

    Article  PubMed  CAS  Google Scholar 

  100. Togayachi A, Kozono Y, Ikehara Y et al (2010) Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci USA 107:11900–11905

    Article  PubMed  CAS  Google Scholar 

  101. Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex ganglioside but exhibit subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667

    Article  PubMed  CAS  Google Scholar 

  102. Sheikh K, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    Article  PubMed  CAS  Google Scholar 

  103. Kawai H, Allende ML, Wada R et al (2001) Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276:6885–6888

    Article  PubMed  CAS  Google Scholar 

  104. Yamashita T, Wu YP, Sandhoff R et al (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102:2725–2730

    Article  PubMed  CAS  Google Scholar 

  105. Inokuchi J (2011) Physiopathological function of hematoside (GM3 ganglioside). Proc Jpn Acad Ser B Phys Biol Sci 87:179–198

    Article  PubMed  CAS  Google Scholar 

  106. Furukawa K, Kumigai T, Kumagai T, Sato T, Kanno R (2011) Embryonic lethality of β-1,4-galactosyltransferase V-deficient mice. Glycoconj J 28. Abstracts of XXI international symposium on glycoconjugates Vienna August 21–26, pp 207–208

  107. Marza E, Simonsen KT, Faergerman O et al (2009) Expression of ceramide glucosyltransferases, which are essential for glycosphigolipid synthesis, is only required in a small subset of C. elegans cells. J Cell Sci 122:822–833

    Article  PubMed  CAS  Google Scholar 

  108. Tajima O, Fujita Y, Oumi Y (2011) Molecular mechanisms for the growth disorders in GM3-only mice. Glycoconj J 28. Abstracts of XXI international symposium on glycoconjugates Vienna August 21–26, p 311

  109. Zhang H, Abraham N, Khan LA et al (2011) Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13:1189–1201

    Article  PubMed  CAS  Google Scholar 

  110. Schnaar RL, Suzuki A, Stanley P (2010) Glycosphingolipids. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, Second edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Kościelak.

Additional information

Special Issue: In Honor of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kościelak, J. The Hypothesis on Function of Glycosphingolipids and ABO Blood Groups Revisited. Neurochem Res 37, 1170–1184 (2012). https://doi.org/10.1007/s11064-012-0734-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0734-0

Keywords

Navigation