Skip to main content
Log in

Rats With Different Thresholds to Clonic Convulsions Induced by DMCM Differ in the Binding of [3H]-MK-801 and [3H]-Ouabain in the Membranes of Brain Regions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Considering the putative participation of N-methyl-D-aspartate (NMDA) receptors and the Na+, K+-ATPase enzymes in the susceptibility to convulsions induced by the benzodiazepine inverse agonist methyl 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM), the present study sought to determine if rats with high (HTR) and low (LTR) thresholds to clonic convulsions induced by DMCM differed in the following aspects: the binding of NMDA receptors by [3H]-MK-801, Na+, K+-ATPase activity (K+-stimulated p-nitrophenylphosphatase) and high-affinity [3H]-ouabain binding to membranes from discrete brain regions. Compared to the HTR subgroup, the LTR subgroup presented a lower binding of [3H]-MK-801 in the hippocampus, frontal cortex and striatum. The subgroups did not differ in K+-p-nitrophenylphosphatase activity, but the LTR subgroup had a lower density of isozymes with a high-affinity to ouabain in the brainstem and in the frontal cortex and a lower affinity to ouabain in the hippocampus than the HTR subgroup. These results suggest that NMDA receptors and ouabain-sensitive Na+, K+-ATPase isozymes may underlie the susceptibility to DMCM-induced convulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Browning RA (1985) Role of the brain-stem reticular formation in tonic-clonic seizures: lesion and pharmacological studies. Fed Proc 44(8):2425–2431

    PubMed  CAS  Google Scholar 

  2. Gale K (1988) Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia 29(2):S15–S34

    Article  PubMed  Google Scholar 

  3. Kelly ME, Battye RA, McIntyre DC (1999) Cortical spreading depression reversibly disrupts convulsive motor seizure expression in amygdala-kindled rats. Neurosci 91(1):305–313

    Article  CAS  Google Scholar 

  4. Norden AD, Blumenfeld H (2002) The role of subcortical structures in human epilepsy. Epilepsy Behav 3:219–231

    Article  PubMed  Google Scholar 

  5. Willoughby JO, Macckenzie L, Medvedev A, Hiscock JJ (1999) Generalized convulsive epilepsy: possible mechanisms. J Clin Neurosci 6(3):189–194

    Article  PubMed  Google Scholar 

  6. Berkovic SF, Mulley JC, Scheffer IE, Petrou S (2006) Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci 29(7):391–397

    Article  PubMed  CAS  Google Scholar 

  7. Bateson AN (2004) The benzodiazepine site of the GABAA receptor: an old target with a new potential? Sleep Med 5(1):S9–S15

    Article  PubMed  Google Scholar 

  8. Platt SR (2007) The role of glutamate in central nervous system health and disease—A review. Vet J 173:278–286

    Article  PubMed  CAS  Google Scholar 

  9. Benarroch EE (2007) GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology 68:612–614

    Article  PubMed  CAS  Google Scholar 

  10. Corda MG, Orlandi M, Lecca D, Giorgi O (1992) Decrease in Gabaergic function induced by pentylenotetrazol kindling in rats: antagonism by MK-801. JPET 262(2):792–800

    CAS  Google Scholar 

  11. Croucher MJ, Bradford HF (1990) NMDA receptor blockade inhibits glutamate-induced kindling of the rat amygdala. Brain Res 506:349–352

    Article  PubMed  CAS  Google Scholar 

  12. Croucher MJ, Bradford HF, Sunter DC, Watkins JC (1988) Inhibition of the development of electrical kindling of the prepyriform cortex by daily focal injections of excitatory amino acid antagonists. Eur J Pharmacol 152:29–38

    Article  PubMed  CAS  Google Scholar 

  13. Croucher MJ, Cotterell KL, Bradford HF (1992) Competitive NMDA receptor antagonists raise electrically kindled generalized seizure thresholds. Neurochem Res 17(5):409–413

    Article  PubMed  CAS  Google Scholar 

  14. Tsuda M, Suzuki T, Misawa M (1997) Role of the NMDA receptor complex in DMCM-induced seizure in mice. NeuroReport 8:603–606

    Article  PubMed  CAS  Google Scholar 

  15. Tsuda M, Shimizu N, Yajima Y, Suzuki T, Misawa M (1998) Hypersusceptibility to DMCM-induced seizures during diazepam withdrawal in mice: evidence for upregulation of NMDA receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 357:309–315

    Article  CAS  Google Scholar 

  16. Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37:11–18

    Article  PubMed  CAS  Google Scholar 

  17. Cousin MA, Nicholls DG, Pocock JM (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem 64(5):2097–2104

    Article  PubMed  CAS  Google Scholar 

  18. Li S, Stys PK (2001) Na+K+ -ATPase inhibition and depolarization induce glutamate release via reverse Na+-dependent transport in spinal cord white matter. Neurosci 107(4):675–683

    Article  CAS  Google Scholar 

  19. Veldhuis WB, van der Stelt M, Delmas F, Gillet B, Veldink G, Vliegenthart JFG et al (2003) In vivo excitotoxicity induced by ouabain, a Na +/K + -ATPase inhibitor. J Cereb Blood Flow Metab 23:62–74

    Article  PubMed  CAS  Google Scholar 

  20. Therien A, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566

    PubMed  CAS  Google Scholar 

  21. Yu SP (2003) Na + , K + -ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609

    Article  PubMed  CAS  Google Scholar 

  22. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  23. Jewell EA, Lingrel JB (1991) Comparison of the substrate dependence properties of the rat Na, K-ATPase α1, α2 and α3 isoforms expressed in HeLa Cells. J Biol Chem 266(25):16925–16930

    PubMed  CAS  Google Scholar 

  24. Bignami A, Palladini G (1966) Experimentally produced cerebral status spongiosus and continuous pseudorhythmic electroencephalographic discharges with a membrane-ATPase inhibitor in the rat. Nature 209:413–414

    Article  PubMed  CAS  Google Scholar 

  25. Pedley TA, Zuckermann EC, Glaser GH (1969) Epileptogenic effects of localized ventricular perfusion of ouabain on dorsal hippocampus. Exp Neurol 25:207–219

    Article  PubMed  CAS  Google Scholar 

  26. Mobasheri A, Avila J, Cózar-Castellano I, Brownleader MD, Trevan M, Francis MJO et al (2000) Na + , K + -ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interaction. Biosci Rep 20(2):51–91

    Article  PubMed  CAS  Google Scholar 

  27. Blanco G, Xie ZJ, Mercer RW (1993) Functional expression of the α2 and α3 isoforms of the Na, K-ATPase in baculovirus-infected insect cells. Proc Natl Acad Sci USA 90:1824–1828

    Article  PubMed  CAS  Google Scholar 

  28. O’Brien WJ, Lingrel JB, Wallick ET (1994) Ouabain binding kinetics of the rat alpha two and alpha three isoforms of the sodium-potassium adenosine triphosphate. Arch Biochem Biophys 310(1):32–39

    Article  PubMed  Google Scholar 

  29. Ferrarese C, Cogliati C, Tortorella R, Zucca C, Bogliun G, Beghi E (1998) Diazepam binding inhibitor (DBI) in the plasma of pediatric and adult epileptic patients. Epilepsy Res 29:129–134

    Article  PubMed  CAS  Google Scholar 

  30. Polc P, Dučić I (1991) Benzodiazepine antagonist flumazenil reduces bicuculine-induced enhancement of neuronal activity in the spinal cord. Neuropharmacol 30(1):107–111

    Article  CAS  Google Scholar 

  31. Polc P, Jahromi SS, Facciponte G, Pelletier MR, Zhang L, Carlen PL (1996) Benzodiazepine antagonists reduce epileptiform discharges in rat hippocampal slices. Epilepsia 37(10):1007–1014

    Article  PubMed  CAS  Google Scholar 

  32. Pole P, Jahromi SS, Facciponte G, Pelletier MR, Zhang L, Carlen PL (1995) Benzodiazepine antagonist flumazenil reduces hippocampal epileptiform activity. Neuroreport 6(11):1549–1552

    Article  Google Scholar 

  33. Van Rijn C, Meinardi H (2009) Neurochemistry and epileptology. Epilepsia 50(3):17–29

    Article  PubMed  Google Scholar 

  34. Vezzani A, Serafini R, Stasi MA, Samanin R, Ferrarese C (1991) Epileptogenic activity of two peptides derived from diazepam binding inhibitor after intrahippocampal injection in rats. Epilepsia 32(5):597–603

    Article  PubMed  CAS  Google Scholar 

  35. Braestrup C, Schmiechen R, Neef G, Nielsen M, Petersen EN (1982) Interaction of convulsive ligands with benzodiazepine receptors. Science 216:1241–1243

    Article  PubMed  CAS  Google Scholar 

  36. Petersen EN (1983) DMCM: a potent convulsive benzodiazepine receptor ligand. Eur J Pharmacol 94:117–124

    Article  PubMed  CAS  Google Scholar 

  37. Contó MB, Carvalho JGB, Venditti MAC (2011) Rats with different thresholds for DMCM-induced clonic convulsions differ in the sleep-time of diazepam and [3H]-Ro 15–4513 binding. Epilepsy Res. doi:10.1016/j.eplepsyres.2011.09.014

    PubMed  Google Scholar 

  38. Rosa RB, Schwartzbold C, Dalcin KB, Ghisleni GC, Ribeiro CAJ, Moretto MB et al (2004) Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats. Neurochem Int 45:1087–1094

    Article  PubMed  CAS  Google Scholar 

  39. Bowery NG, Wong EHF, Hudson AL (1988) Quantitative autoradiography of [3H]-MK-801 binding sites in mammalian brain. Br J Pharmacol 93:944–954

    PubMed  CAS  Google Scholar 

  40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  41. Alves R, de Carvalho JGB, Benedito MAC (2005) High and low rearing subgroups of rats selected in the open field differ in the activity of K+-stimulated-p-nitrophenylphosphatase in the hippocampus. Brain Res 1058:178–182

    Article  PubMed  CAS  Google Scholar 

  42. Bignotto M, Benedito MAC (2006) Repeated electroconvulsive shock induces changes in high-affinity [3H]-ouabain binding to rat striatal membranes. Neurochem Res 31:515–521

    Article  PubMed  CAS  Google Scholar 

  43. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  44. March PA (1998) Seizures: Classification, Etiologies, and Pathophysiology. Clin Tech Small Anim Pract 13(3):119–131

    Article  PubMed  CAS  Google Scholar 

  45. Ekonomou A, Angelatou F (1999) Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced “kindling” model of epilepsy. Neurochem Res 24(12):1515–1522

    Article  PubMed  CAS  Google Scholar 

  46. Oguro K, Ito M, Tsuda H, Mutoh K, Shiraishi H, Shirasaka Y et al (1990) NMDA-sensitive L-[3H]glutamate binding in cerebral cortex of El mice. Epilepsy Res 6:211–214

    Article  PubMed  CAS  Google Scholar 

  47. Luthman J, Humpel C (1997) Pentylenotetrazol kindling decreases N-methyl-D-aspartate and kainate but increases gamma-aminobutyric acid-A receptor binding in discrete rat brain areas. Neurosci Let 239:9–12

    Article  CAS  Google Scholar 

  48. Hauger R, Luu HMD, Meyer DK, Goodwin FK, Paul SM (1985) Characterization of “high-affinity” [3H]ouabain binding in the rat central nervous system. J Neurochem 44(6):1709–1715

    Article  PubMed  CAS  Google Scholar 

  49. Pôças ESC, Costa PRR, Silva AJM, Noel F (2003) 2-Methoxy-3,8,9-trihydroxy coumestan: a new synthetic inhibitor of Na + , K + -ATPase with an original mechanism of action. Biochem Pharmacol 66:2169–2176

    Article  PubMed  Google Scholar 

  50. Maki AA, Baskin DG, Stahl WL (1992) [3H]-Ouabain binding sites in rat brain: distribution and properties assessed by quantitative autoradiography. J Histochem Cytochem 40(6):771–779

    Article  PubMed  CAS  Google Scholar 

  51. Clapcote SJ, Duffy S, Xie G, Kirshenbaum G, Bechard AR, Schack VR et al (2009) Mutation 1810N in the alfa3 isoform of Na+, K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. PNAS 106(33):14085–14090

    Article  PubMed  CAS  Google Scholar 

  52. Arnaiz GRL, Reinés A, Herbin T, Peña C (1998) Na + , K + -ATPase interaction with a brain endogenous inhibitor (endobain E). Neurochem Int 33:425–433

    Article  Google Scholar 

  53. Goto A, Yamada K, Yagi N, Yoshioka M, Sugimoto T (1992) Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol Rev 44(3):377–399

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ricardo Marques for his technical assistance. This research was supported by Associação Fundo de Incentivo à Pesquisa (AFIP). M.B. Contó was the recipient of a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Brandão Contó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contó, M.B., de Carvalho, J.G.B. & Venditti, M.A.C. Rats With Different Thresholds to Clonic Convulsions Induced by DMCM Differ in the Binding of [3H]-MK-801 and [3H]-Ouabain in the Membranes of Brain Regions. Neurochem Res 37, 1442–1449 (2012). https://doi.org/10.1007/s11064-012-0730-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0730-4

Keywords

Navigation