Skip to main content
Log in

Plasma Membrane-Associated Glycohydrolases Activation by Extracellular Acidification due to Proton Exchangers

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this paper, we show that the pH optimum for the plasma membrane (PM)-associated activity of four glycohydrolases (conduritol B epoxide sensitive β-glucosidase, β-glucosidase GBA2, β-hexosaminidase and β-galactosidase) measured on intact cells is acidic. Moreover, we show that drugs able to modify the efflux of protons across the PM, thus locally affecting the extracellular proton concentration close to the PM, are able to modulate the activities of these enzymes. These data strongly suggest that pH-dependent modulation of PM-associated glycohydrolases activities could be an effective way to locally modulate the cell surface glycoconjugate composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5318

    PubMed  CAS  Google Scholar 

  2. Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99:10231–10233

    Article  PubMed  CAS  Google Scholar 

  3. Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473:21–34

    Article  PubMed  CAS  Google Scholar 

  4. Traylor TD, Hogan EL (1980) Gangliosides of human cerebral astrocytomas. J Neurochem 34:126–131

    Article  PubMed  CAS  Google Scholar 

  5. Jennemann R, Rodden A, Bauer BL, Mennel HD et al (1990) Glycosphingolipids of human gliomas. Cancer Res 50:7444–7449

    PubMed  CAS  Google Scholar 

  6. Shinoura N, Dohi T, Kondo T, Yoshioka M et al (1992) Ganglioside composition and its relation to clinical data in brain tumors. Neurosurgery 31:541–549

    Article  PubMed  CAS  Google Scholar 

  7. Pan XL, Izumi T, Yamada H, Akiyoshi K et al (2000) Ganglioside patterns in neuroepithelial tumors of childhood. Brain Dev 22:196–198

    Article  PubMed  CAS  Google Scholar 

  8. Wikstrand CJ, He XM, Fuller GN, Bigner SH et al (1991) Occurrence of lacto series gangliosides 3′-isoLM1 and 3′,6′-isoLD1 in human gliomas in vitro and in vivo. J Neuropathol Exp Neurol 50:756–769

    Article  PubMed  CAS  Google Scholar 

  9. Moskal JR, Kroes RA, Dawson G (2009) The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev Neurother 9:1529–1545

    Article  PubMed  CAS  Google Scholar 

  10. Meany DL, Chan DW (2011) Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 8:7

    Article  PubMed  CAS  Google Scholar 

  11. Guo HB, Lee I, Kamar M, Pierce M (2003) N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell–cell adhesion and intracellular signaling pathways. J Biol Chem 278:52412–52424

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N (2009) Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 344:1387–1390

    Article  PubMed  CAS  Google Scholar 

  13. Dennis JW, Laferte S, Waghorne C, Breitman ML et al (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236:582–585

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto H, Swoger J, Greene S, Saito T et al (2000) Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res 60:134–142

    PubMed  CAS  Google Scholar 

  15. Yamamoto H, Oviedo A, Sweeley C, Saito T et al (2001) Alpha2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res 61:6822–6829

    PubMed  CAS  Google Scholar 

  16. Kroes RA, He H, Emmett MR, Nilsson CL et al (2010) Overexpression of ST6GalNAcV, a ganglioside-specific alpha2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci USA 107:12646–12651

    Article  PubMed  CAS  Google Scholar 

  17. Prinetti A, Chigorno V, Mauri L, Loberto N et al (2007) Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 103(Suppl 1):113–125

    Article  PubMed  CAS  Google Scholar 

  18. Aureli M, Loberto N, Chigorno V, Prinetti A et al (2011) Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 36:1636–1644

    Article  PubMed  CAS  Google Scholar 

  19. Valaperta R, Chigorno V, Basso L, Prinetti A et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229

    Article  PubMed  CAS  Google Scholar 

  20. Aureli M, Loberto N, Lanteri P, Chigorno V et al (2011) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 116:891–899

    Article  PubMed  CAS  Google Scholar 

  21. Miyagi T, Wada T, Yamaguchi K (2008) Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 1780:532–537

    Article  PubMed  CAS  Google Scholar 

  22. Kakugawa Y, Wada T, Yamaguchi K, Yamanami H et al (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci USA 99:10718–10723

    Article  PubMed  CAS  Google Scholar 

  23. Wada T, Hata K, Yamaguchi K, Shiozaki K et al (2007) A crucial role of plasma membrane-associated sialidase in the survival of human cancer cells. Oncogene 26:2483–2490

    Article  PubMed  CAS  Google Scholar 

  24. Boot RG, Verhoek M, Donker-Koopman W, Strijland A et al (2007) Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 282:1305–1312

    Article  PubMed  CAS  Google Scholar 

  25. Mencarelli S, Cavalieri C, Magini A, Tancini B et al (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506

    Article  PubMed  CAS  Google Scholar 

  26. Aureli M, Masilamani AP, Illuzzi G, Loberto N et al (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    Article  PubMed  CAS  Google Scholar 

  27. Monti E, Bassi MT, Papini N, Riboni M et al (2000) Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 349:343–351

    Article  PubMed  CAS  Google Scholar 

  28. van Weely S, Brandsma M, Strijland A, Tager JM et al (1993) Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta 1181:55–62

    PubMed  Google Scholar 

  29. Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74

    PubMed  CAS  Google Scholar 

  30. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299

    Article  PubMed  CAS  Google Scholar 

  31. Chiche J, Brahimi-Horn MC, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794

    Article  PubMed  CAS  Google Scholar 

  32. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    Article  PubMed  CAS  Google Scholar 

  33. Izumi H, Torigoe T, Ishiguchi H, Uramoto H et al (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29:541–549

    Article  PubMed  CAS  Google Scholar 

  34. Stock C, Gassner B, Hauck CR, Arnold H et al (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238

    Article  PubMed  CAS  Google Scholar 

  35. Reshkin SJ, Bellizzi A, Albarani V, Guerra L et al (2000) Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na(+)/H(+) exchange, motility, and invasion induced by serum deprivation. J Biol Chem 275:5361–5369

    Article  PubMed  CAS  Google Scholar 

  36. Overkleeft HS, Renkema GH, Neele J, Vianello P et al (1998) Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 273:26522–26527

    Article  PubMed  CAS  Google Scholar 

  37. Leroy JG, Ho MW, MacBrinn MC, Zielke K et al (1972) I-cell disease: biochemical studies. Pediatr Res 6:752–757

    Article  PubMed  CAS  Google Scholar 

  38. Chiche J, Ilc K, Laferriere J, Trottier E et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    Article  PubMed  CAS  Google Scholar 

  39. Thongon N, Krishnamra N (2011) Omeprazole decreases magnesium transport across Caco-2 monolayers. World J Gastroenterol 17:1574–1583

    Article  PubMed  CAS  Google Scholar 

  40. Wong P, Kleemann HW, Tannock IF (2002) Cytostatic potential of novel agents that inhibit the regulation of intracellular pH. Br J Cancer 87:238–245

    Article  PubMed  CAS  Google Scholar 

  41. Elliott JT, Tona A, Plant AL (2003) Comparison of reagents for shape analysis of fixed cells by automated fluorescence microscopy. Cytometry A 52:90–100

    Article  PubMed  Google Scholar 

  42. Yuanbo C, Fan Z, Jiachang Y (2005) Detecting proton flux across chromatophores driven by F0F1-ATPase using N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoeth anolamine, triethylammonium salt. Anal Biochem 344:102–107

    Article  PubMed  Google Scholar 

  43. Stock C, Mueller M, Kraehling H, Mally S et al (2007) pH nanoenvironment at the surface of single melanoma cells. Cell Physiol Biochem 20:679–686

    Article  PubMed  CAS  Google Scholar 

  44. Krahling H, Mally S, Eble JA, Noel J et al (2009) The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch 458:1069–1083

    Article  PubMed  Google Scholar 

  45. Reber F, Gersch U, Funk RW (2003) Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture. Graefes Arch Clin Exp Ophthalmol 241:140–148

    Article  PubMed  CAS  Google Scholar 

  46. Svastova E, Hulikova A, Rafajova M, Zat’ovicova M et al (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445

    Article  PubMed  CAS  Google Scholar 

  47. Cinar A, Chen M, Riederer B, Bachmann O et al (2007) NHE3 inhibition by cAMP and Ca2+ is abolished in PDZ-domain protein PDZK1-deficient murine enterocytes. J Physiol 581:1235–1246

    Article  PubMed  CAS  Google Scholar 

  48. Zhdanov AV, Ward MW, Taylor CT, Souslova EA et al (2010) Extracellular calcium depletion transiently elevates oxygen consumption in neurosecretory PC12 cells through activation of mitochondrial Na+/Ca2+ exchange. Biochim Biophys Acta 1797:1627–1637

    Article  PubMed  CAS  Google Scholar 

  49. Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:527–552

    Article  PubMed  CAS  Google Scholar 

  50. Wakabayashi S, Hisamitsu T, Pang T, Shigekawa M (2003) Kinetic dissection of two distinct proton binding sites in Na+/H+ exchangers by measurement of reverse mode reaction. J Biol Chem 278:43580–43585

    Article  PubMed  CAS  Google Scholar 

  51. Olbe L, Carlsson E, Lindberg P (2003) A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov 2:132–139

    Article  PubMed  CAS  Google Scholar 

  52. Miyagi T, Wada T, Yamaguchi K, Hata K et al (2008) Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J Biochem 144:279–285

    Article  PubMed  CAS  Google Scholar 

  53. Preti A, Fiorilli A, Lombardo A, Caimi L et al (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35:281–296

    Article  PubMed  CAS  Google Scholar 

  54. Crespo PM, Demichelis VT, Daniotti JL (2010) Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases. J Biol Chem 285:29179–29190

    Article  PubMed  CAS  Google Scholar 

  55. Alessenko AV (2000) The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death. Membr Cell Biol 13:303–320

    PubMed  CAS  Google Scholar 

  56. van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M et al (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211

    Article  PubMed  Google Scholar 

  57. Miyagi T, Wada T, Iwamatsu A, Hata K et al (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274:5004–5011

    Article  PubMed  CAS  Google Scholar 

  58. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  PubMed  CAS  Google Scholar 

  59. Stuwe L, Muller M, Fabian A, Waning J et al (2007) pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585:351–360

    Article  PubMed  Google Scholar 

  60. Bourguignon LY, Singleton PA, Diedrich F, Stern R et al (2004) CD44 interaction with Na+–H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 279:26991–27007

    Article  PubMed  CAS  Google Scholar 

  61. Kalka D, von Reitzenstein C, Kopitz J, Cantz M (2001) The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun 283:989–993

    Article  PubMed  CAS  Google Scholar 

  62. Wang Y, Yamaguchi K, Wada T, Hata K et al (2002) A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. J Biol Chem 277:26252–26259

    Article  PubMed  CAS  Google Scholar 

  63. Willoughby D, Masada N, Crossthwaite AJ, Ciruela A et al (2005) Localized Na+/H+ exchanger 1 expression protects Ca2+-regulated adenylyl cyclases from changes in intracellular pH. J Biol Chem 280:30864–30872

    Article  PubMed  CAS  Google Scholar 

  64. Prinetti A, Loberto N, Chigorno V, Sonnino S (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant PRIN (Italy) to S.S.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti.

Additional information

Special Issue: In Honor of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aureli, M., Loberto, N., Bassi, R. et al. Plasma Membrane-Associated Glycohydrolases Activation by Extracellular Acidification due to Proton Exchangers. Neurochem Res 37, 1296–1307 (2012). https://doi.org/10.1007/s11064-012-0725-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0725-1

Keywords

Navigation