Skip to main content

Advertisement

Log in

Plasma Membrane-Associated Glycohydrolases Along Differentiation of Murine Neural Stem Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive β-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive β-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Yanagisawa M, Yu RK (2007) The expression and functions of glycoconjugates in neural stem cells. Glycobiology 17:R57–R74

    Article  Google Scholar 

  2. Muramatsu T, Muramatsu H (2004) Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 21:41–45

    Article  PubMed  CAS  Google Scholar 

  3. Yanagisawa M, Taga T, Nakamura K, Ariga T et al (2005) Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. J Neurochem 95:1311–1320

    Article  PubMed  CAS  Google Scholar 

  4. Angata K, Fukuda M (2003) Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85:195–206

    Article  PubMed  CAS  Google Scholar 

  5. Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290

    Article  PubMed  CAS  Google Scholar 

  6. Karagogeos D, Morton SB, Casano F, Dodd J et al (1991) Developmental expression of the axonal glycoprotein TAG-1: differential regulation by central and peripheral neurons in vitro. Development 112:51–67

    PubMed  CAS  Google Scholar 

  7. Garcion E, Halilagic A, Faissner A, ffrench-Constant C (2004) Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131:3423–3432

    Article  PubMed  CAS  Google Scholar 

  8. Kabos P, Matundan H, Zandian M, Bertolotto C et al (2004) Neural precursors express multiple chondroitin sulfate proteoglycans, including the lectican family. Biochem Biophys Res Commun 318:955–963

    Article  PubMed  CAS  Google Scholar 

  9. Ida M, Shuo T, Hirano K, Tokita Y et al (2006) Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J Biol Chem 281:5982–5991

    Article  PubMed  CAS  Google Scholar 

  10. Stallcup WB (2002) The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31:423–435

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez JA, Piddini E, Hasegawa T, Miyagi T et al (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395

    PubMed  CAS  Google Scholar 

  12. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(suppl):S440–S445

    Article  PubMed  Google Scholar 

  13. Inokuchi J, Mizutani A, Jimbo M, Usuki S et al (1997) Up-regulation of ganglioside biosynthesis, functional synapse formation, and memory retention by a synthetic ceramide analog (L-PDMP). Biochem Biophys Res Commun 237:595–600

    Article  PubMed  CAS  Google Scholar 

  14. Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neuroscience 5:1647–1655

    Article  PubMed  CAS  Google Scholar 

  15. Ngamukote S, Yanagisawa M, Ariga T, Ando S et al (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    Article  PubMed  CAS  Google Scholar 

  16. Svennerholm L, Bostrom K, Fredman P, Mansson JE et al (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005:109–117

    PubMed  CAS  Google Scholar 

  17. Yavin Z, Yavin E (1978) Immunofluorescent patterns of dissociated rat embryo cerebral cells during development in surface culture: distinctive reactions with neurite and perikaryon cell membranes. Dev Neurosci 1:31–40

    Article  PubMed  CAS  Google Scholar 

  18. Riboni L, Prinetti A, Pitto M, Tettamanti G (1990) Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture. Neurochem Res 15:1175–1183

    Article  PubMed  CAS  Google Scholar 

  19. Rosenberg A, Sauer A, Noble EP, Gross HJ et al (1992) Developmental patterns of ganglioside sialosylation coincident with neuritogenesis in cultured embryonic chick brain neurons. J Biol Chem 267:10607–10612

    PubMed  CAS  Google Scholar 

  20. Prinetti A, Chigorno V, Prioni S, Loberto N et al (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    Article  PubMed  CAS  Google Scholar 

  21. Prioni S, Loberto N, Prinetti A, Chigorno V et al (2002) Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1–7 neuronal cells. Neurochem Res 27:831–840

    Article  PubMed  CAS  Google Scholar 

  22. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  PubMed  CAS  Google Scholar 

  23. Valaperta R, Chigorno V, Basso L, Prinetti A et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. Faseb J 20:1227–1229

    Article  PubMed  CAS  Google Scholar 

  24. Roseman S (1970) The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5:270–297

    Article  PubMed  CAS  Google Scholar 

  25. Papini N, Anastasia L, Tringali C, Croci G et al (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279:16989–16995

    Article  PubMed  CAS  Google Scholar 

  26. Aureli M, Masilamani AP, Illuzzi G, Loberto N et al (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    Article  PubMed  CAS  Google Scholar 

  27. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  28. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    Article  PubMed  CAS  Google Scholar 

  29. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  PubMed  CAS  Google Scholar 

  30. Soria JM, Taglialatela P, Gil-Perotin S, Galli R et al (2004) Defective postnatal neurogenesis and disorganization of the rostral migratory stream in absence of the Vax1 homeobox gene. J Neurosci 24:11171–11181

    Article  PubMed  CAS  Google Scholar 

  31. Katakowski M, Zhang Z, Decarvalho AC, Chopp M (2005) EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells. Neurosci Lett 385:204–209

    Article  PubMed  CAS  Google Scholar 

  32. Merkle FT, Alvarez-Buylla A (2006) Neural stem cells in mammalian development. Curr Opin Cell Biol 18:704–709

    Article  PubMed  CAS  Google Scholar 

  33. Wang SZ, Dulin J, Wu H, Hurlock E et al (2006) An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development 133:3389–3398

    Article  PubMed  CAS  Google Scholar 

  34. Wen C, Li S, Wang H, Zhang J et al (2008) Hybrid synapse formation between spinal motoneurons and superior cervical ganglion neurons in vitro: a study of the functional reconstruction of visceral organs. Auton Neurosci 144:83–88

    Article  PubMed  CAS  Google Scholar 

  35. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    Article  PubMed  CAS  Google Scholar 

  36. De Pietri Tonelli D, Pulvers J, Haffner C, Murchison E et al (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. J Neurosci 135:3911–3921

    Google Scholar 

  37. Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135:227–239

    Article  PubMed  CAS  Google Scholar 

  38. Buccoliero R, Bodennec J, Futerman AH (2002) The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem Res 27:565–574

    Article  PubMed  CAS  Google Scholar 

  39. Buccoliero R, Futerman AH (2003) The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol Res 47:409–419

    Article  PubMed  CAS  Google Scholar 

  40. Jung JU, Ko K, Lee DH, Chang KT et al (2009) The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 41:935–945

    Article  PubMed  CAS  Google Scholar 

  41. Yu RK, Yanagisawa M (2007) Glycosignaling in neural stem cells: involvement of glycoconjugates in signal transduction modulating the neural stem cell fate. J Neurochem 103(suppl 1):39–46

    Article  PubMed  CAS  Google Scholar 

  42. Gritti A, Bonfanti L, Doetsch F, Caille I et al (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445

    PubMed  CAS  Google Scholar 

  43. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres–re-evaluating the relationship. Nat Methods 2:333–336

    Article  PubMed  CAS  Google Scholar 

  44. Aureli M, Loberto N, Lanteri P, Chigorno V et al (2011) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 116:891–899

    Article  PubMed  CAS  Google Scholar 

  45. Martino S, di Girolamo I, Cavazzin C, Tiribuzi R et al (2009) Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. J Neurochem 109:135–147

    Article  PubMed  CAS  Google Scholar 

  46. Overkleeft HS, Renkema GH, Neele J, Vianello P et al (1998) Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 273:26522–26527

    Article  PubMed  CAS  Google Scholar 

  47. Sonnino S, Chigorno V, Tettamanti G (2000) Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol 311:639–656

    Article  PubMed  CAS  Google Scholar 

  48. Gritti A, Dal Molin M, Foroni C, Bonfanti L (2009) Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol 517:333–349

    Article  PubMed  Google Scholar 

  49. Cavazzin C, Ferrari D, Facchetti F, Russignan A et al (2006) Unique expression and localization of aquaporin-4 and aquaporin-9 in murine and human neural stem cells and in their glial progeny. Glia 53(2):167–181

    Article  PubMed  Google Scholar 

  50. Wang P, Zhang J, Bian H, Wu P et al (2004) Induction of lysosomal and plasma membrane-bound sialidases in human T-cells via T-cell receptor. Biochem J 380:425–433

    Article  PubMed  CAS  Google Scholar 

  51. Rao J, Otto WR (1992) Fluorimetric DNA assay for cell growth estimation. Anal Biochem 207:186–192

    Article  PubMed  CAS  Google Scholar 

  52. van Diggelen OP, Voznyi YV, Keulemans JL, Schoonderwoerd K et al (2005) A new fluorimetric enzyme assay for the diagnosis of Niemann-Pick A/B, with specificity of natural sphingomyelinase substrate. J Inherit Metab Dis 28:733–741

    Article  PubMed  CAS  Google Scholar 

  53. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2 +)-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  PubMed  CAS  Google Scholar 

  54. Seaberg RM, Smukler SR, van der Kooy D (2005) Intrinsic differences distinguish transiently neurogenic progenitors from neural stem cells in the early postnatal brain. Dev Biol 278:71–85

    Article  PubMed  CAS  Google Scholar 

  55. Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervello C et al (2011) Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9:447–462

    Article  PubMed  CAS  Google Scholar 

  56. Bhattacharyya A, McMillan E, Wallace K, Tubon TC Jr et al (2008) Normal neurogenesis but abnormal gene expression in human fragile X cortical progenitor cells. Stem Cells Dev 17:107–117

    Article  PubMed  CAS  Google Scholar 

  57. Park KI, Ourednik J, Ourednik V, Taylor RM et al (2002) Global gene and cell replacement strategies via stem cells. Gene Ther 9:613–624

    Article  PubMed  CAS  Google Scholar 

  58. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  PubMed  CAS  Google Scholar 

  59. Cavazzin C, Ferrari D, Facchetti F, Russignan A et al (2006) Unique expression and localization of aquaporin-4 and aquaporin-9 in murine and human neural stem cells and in their glial progeny. Glia 53:167–181

    Article  PubMed  Google Scholar 

  60. Asou H, Hirano S, Uyemura K (1989) Ganglioside composition of astrocytes. Cell Struct Funct 14:561–568

    Article  PubMed  CAS  Google Scholar 

  61. Asou H, Hirano S, Kohsaka S (1989) Changes in ganglioside composition and morphological features during the development of cultured astrocytes from rat brain. Neurosci Res 6:369–375

    Article  PubMed  CAS  Google Scholar 

  62. Prinetti A, Rocchetta F, Costantino E, Frattini A et al (2009) Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis. Glycoconj J 26:623–633

    Article  PubMed  CAS  Google Scholar 

  63. Haughey NJ (2010) Sphingolipids in neurodegeneration. Neuromolecular Med 12:301–305

    Article  PubMed  CAS  Google Scholar 

  64. Aureli M, Loberto N, Bassi R, Ferraretto A et al (2011) Plasma membrane-associated glycohydrolases activation by extracellular acidification due to proton exchangers. Neurochem Res, Accepted

    Google Scholar 

  65. Sonnino S, Cantu L, Corti M, Acquotti D et al (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71:21–45

    Article  PubMed  CAS  Google Scholar 

  66. Brocca P, Sonnino S (1997) Dynamic and spatial organization of surface gangliosides. Trends Glycosci Glycotech 9:433–445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant PRIN (Italy) to S.S.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Additional information

Special Issue: In Honour of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aureli, M., Gritti, A., Bassi, R. et al. Plasma Membrane-Associated Glycohydrolases Along Differentiation of Murine Neural Stem Cells. Neurochem Res 37, 1344–1354 (2012). https://doi.org/10.1007/s11064-012-0719-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0719-z

Keywords

Navigation