Skip to main content

Advertisement

Log in

The Roles of Neutral Sphingomyelinases in Neurological Pathologies

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neutral sphingomyelinases (N-SMases) are a group of Mg2+-dependent enzymes with a pH optimum in the neutral range. N-SMases catalyze the conversion of sphingomyelin to ceramide and have been found particularly enriched in brain tissue. N-SMase activity has been implicated in many physiological and pathological processes affecting the brain and nervous system. In this review, we discuss the proposed functions of N-SMase with a particular emphasis on its role in neurological disorders, such as age-related neurodegeneration, Alzheimer’s disease, HIV-associated dementia, atherosclerosis, ischemia–reperfusion injury, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    PubMed  CAS  Google Scholar 

  2. Luberto C, Kraveka JM, Hannun YA (2002) Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res 27:609–617

    PubMed  CAS  Google Scholar 

  3. Jones I, He X, Katouzian F, Darroch PI, Schuchman EH (2008) Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab 95:152–162

    PubMed  CAS  Google Scholar 

  4. Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromol Med 12:320–330

    Google Scholar 

  5. Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci USA 95:3638–3643

    PubMed  CAS  Google Scholar 

  6. Tomiuk S, Zumbansen M, Stoffel W (2000) Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275:5710–5717

    PubMed  CAS  Google Scholar 

  7. Rodrigues-Lima F, Fensome AC, Josephs M, Evans J, Veldman RJ, Katan M (2000) Structural requirements for catalysis and membrane targeting of mammalian enzymes with neutral sphingomyelinase and lysophospholipid phospholipase C activities. Analysis by chemical modification and site-directed mutagenesis. J Biol Chem 275:28316–28325

    PubMed  CAS  Google Scholar 

  8. Tepper AD, Ruurs P, Borst J, van Blitterswijk WJ (2001) Effect of overexpression of a neutral sphingomyelinase on CD95-induced ceramide production and apoptosis. Biochem Biophys Res Commun 280:634–639

    PubMed  CAS  Google Scholar 

  9. Zumbansen M, Stoffel W (2002) Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol Cell Biol 22:3633–3638

    PubMed  CAS  Google Scholar 

  10. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Krönke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281:13784–13793

    PubMed  CAS  Google Scholar 

  11. Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol. Cancer Res 6:795–807

    PubMed  CAS  Google Scholar 

  12. Krut et al. (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem

  13. Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci USA 97:5895–5900

    PubMed  CAS  Google Scholar 

  14. Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277:41128–41139

    PubMed  CAS  Google Scholar 

  15. Marchesini N (2003) Biochemical properties of mammalian neutral sphingomyelinase2 and its role in sphingolipid metabolism. J Biol Chem 278:13775–13783

    PubMed  CAS  Google Scholar 

  16. Clarke CJ, Cloessner EA, Roddy PL, Hannun YA (2011) Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-α in MCF-7 cells. Biochem J 435:381–390

    PubMed  CAS  Google Scholar 

  17. Philipp S, Puchert M, Adam-Klages S, Tchikov V, Winoto-Morbach S, Mathieu S, Deerberg A, Kolker L, Marchesini N, Kabelitz D et al (2010) The polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proc Natl Acad Sci USA 107:1112–1117

    PubMed  CAS  Google Scholar 

  18. Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Krönke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86:937–947

    PubMed  CAS  Google Scholar 

  19. Tcherkasowa AE, Adam-Klages S, Kruse ML, Wiegmann K, Mathieu S, Kolanus W, Krönke M, Adam D (2002) Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. J Immunol 169:5161–5170

    PubMed  Google Scholar 

  20. Milhas D, Clarke CJ, Idkowiak-Baldys J, Canals D, Hannun YA (2010) Anterograde and retrograde transport of neutral sphingomyelinase-2 between the golgi and the plasma membrane. Biochim Biophys Acta 1801:1361–1374

    PubMed  CAS  Google Scholar 

  21. Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 279:25101–25111

    PubMed  CAS  Google Scholar 

  22. Devillard R, Galvani S, Thiers JC, Guenet JL, Hannun Y, Bielawski J, Nègre-Salvayre A, Salvayre R, Augé N (2010) Stress-induced sphingolipid signaling: role of type-2 neutral sphingomyelinase in murine cell apoptosis and proliferation. PLoS ONE 5:e9826

    PubMed  Google Scholar 

  23. Stoffel W, Jenke B, Blöck B, Zumbansen M, Koebke J (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 102:4554–4559

    PubMed  CAS  Google Scholar 

  24. Stoffel W, Jenke B, Holz B, Binczek E, Günter RH, Knifka J, Koebke J, Niehoff A (2007) Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am J Pathol 171:153–161

    PubMed  CAS  Google Scholar 

  25. Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, Goldberg M, Guénet JL et al (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37:803–805

    PubMed  CAS  Google Scholar 

  26. Khavandgar Z, Poirier C, Clarke CJ, Li J, Wang N, McKee MD, Hannun YA, Murshed MA (2011) Cell-autonomous role for neutral sphingomyelinase 2 in bone mineralization. J. Cell Biol. J Cell Biol 194:277–289

    CAS  Google Scholar 

  27. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070

    PubMed  CAS  Google Scholar 

  28. Lightle SA, Oakley JI, Nikolova-Karakashian MN (2000) Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech Ageing Dev 120:111–125

    PubMed  CAS  Google Scholar 

  29. Hernández-Corbacho MJ, Jenkins RW, Clarke CJ, Hannun YA, Obeid LM, Snider AJ, Siskind LJ (2011) Accumulation of long-chain glycosphingolipids during aging is prevented by caloric restriction. PLoS One 6:e20411

    PubMed  Google Scholar 

  30. Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    PubMed  CAS  Google Scholar 

  31. Ditaranto-Desimone K, Saito M, Tekirian TL, Saito M, Berg M, Dubowchik G, Soreghan B, Thomas S, Marks N, Yang AJ (2003) Neuronal endosomal/lysosomal membrane destabilization activates caspases and induces abnormal accumulation of the lipid secondary messenger ceramide. Brain Res Bull 59:523–531

    PubMed  CAS  Google Scholar 

  32. Jana A, Pahan K (2007) Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis. J Neuroimmune Pharmacol 2:184–193

    PubMed  Google Scholar 

  33. Wheeler D, Knapp E, Bandaru VV, Wang Y, Knorr D, Poirier C, Mattson MP, Geiger JD, Haughey NJ (2009) Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem 109:1237–1249

    PubMed  CAS  Google Scholar 

  34. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    PubMed  CAS  Google Scholar 

  35. Arboleda G, Morales LC, Benítez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59:333–346

    PubMed  CAS  Google Scholar 

  36. de la Monte SM, Tong M, Nguyen V, Setshedi M, Longat L, Wands JR (2010) Ceramide-mediated insulin resistance and impairment of cognitive-motor functions. J Alzheimers Dis 21:967–984

    PubMed  Google Scholar 

  37. Sawada M, Nakashima S, Banno Y, Yamakawa H, Hayashi K, Takenaka K, Nishimura Y, Sakai N, Nozawa Y (2000) Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 7:761–772

    PubMed  CAS  Google Scholar 

  38. Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K, Colombini M (2010) Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis 15:553–562

    PubMed  CAS  Google Scholar 

  39. Crivello NA, Rosenberg IH, Dallal GE, Bielinski D, Joseph JA (2005) Age-related changes in neutral sphingomyelin-specific phospholipase C activity in striatum, hippocampus, and frontal cortex: implication for sensitivity to stress and inflammation. Neurochem Int 47:573–579

    PubMed  CAS  Google Scholar 

  40. Denisova NA, Cantuti-Castelvetri I, Hassan WN, Paulson KE, Joseph JA (2001) Role of membrane lipids in regulation of vulnerability to oxidative stress in PC12 cells: implication for aging. Free Radic Biol Med 30:671–678

    PubMed  CAS  Google Scholar 

  41. Liu H, Wang H, Shenvi S, Hagen TM, Liu R-M (2004) Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci 1019:346–349

    PubMed  CAS  Google Scholar 

  42. Toroser D, Sohal RS (2007) Age-associated perturbations in glutathione synthesis in mouse liver. Biochem J 405:583–589

    PubMed  CAS  Google Scholar 

  43. Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, Mockett RJ, Rebrin I, Hubbard JG, Sohal RS (2005) Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster. J Biol Chem 280:37331–37338

    PubMed  CAS  Google Scholar 

  44. Tabatadze N, Savonenko A, Song H, Bandaru VVR, Chu M, Haughey NJ (2010) Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res 88:2940–2951

    PubMed  CAS  Google Scholar 

  45. Jeon HJ, Lee DH, Kang MS, Lee MO, Jung KM, Jung SY, Kim DK (2005) Dopamine release in PC12 cells is mediated by Ca2+-dependent production of ceramide via sphingomyelin pathway. J Neurochem 95:811–820

    PubMed  CAS  Google Scholar 

  46. Hering H, Lin C-C, Shen M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    PubMed  CAS  Google Scholar 

  47. Nicol GD (2008) Nerve growth factor, sphingomyelins, and sensitization in sensory neurons. Sheng Li Xue Bao 60:603–604

    PubMed  Google Scholar 

  48. Ito A, Horigome K (1995) Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. J Neurochem 65:463–466

    PubMed  CAS  Google Scholar 

  49. Brann AB, Scott R, Neuberger Y, Abulafia D, Boldin S, Fainzilber M, Futerman AH (1999) Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci 19:8199–8208

    PubMed  CAS  Google Scholar 

  50. de Chaves EP (2001) Ceramide inhibits axonal growth and nerve growth factor uptake without compromising the viability of sympathetic neurons. J Biol Chem 276:36207–36214

    PubMed  Google Scholar 

  51. Costantini C, Weindruch R, Della Valle G, Puglielli L (2005) A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging. Biochem J 391:59–67

    PubMed  CAS  Google Scholar 

  52. de la Monte SM, Tong M, Lawton M, Longato L (2009) Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Mol Neurodegener 4:54

    PubMed  Google Scholar 

  53. Giometto B, Argentiero V, Sanson F, Ongaro G, Tavolato B (1988) Acute-phase proteins in Alzheimer’s disease. Eur Neurol 28:30–33

    PubMed  CAS  Google Scholar 

  54. Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615

    PubMed  CAS  Google Scholar 

  55. Fillit H, Ding W, Buee L et al (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 129:318–320

    PubMed  CAS  Google Scholar 

  56. Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 1:14

    Google Scholar 

  57. Chakraborty G, Ziemba S, Drivas A, Ledeen RW (1997) Myelin contains neutral sphingomyelinase activity that is stimulated by tumor necrosis factor-alpha. J Neurosci Res 50:466–476

    PubMed  CAS  Google Scholar 

  58. Zhang F, Sha J, Wood TG et al (2008) Alteration in the activation state of new inflammation-associated targets by phospholipase A2-activating protein (PLAA). Cell Signal 20:844–861

    PubMed  CAS  Google Scholar 

  59. Adibhatla RM, Hatcher JF (2008) Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB reports 41:560–567

    PubMed  CAS  Google Scholar 

  60. Kriem B, Sponne I, Fifre A et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J 19:85–87

    PubMed  CAS  Google Scholar 

  61. Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J-L, Oster T, Pillot T (2006) Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 23:178–189

    PubMed  CAS  Google Scholar 

  62. Rothwell N (2003) Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun 17:152–157

    PubMed  Google Scholar 

  63. Kossmann T, Hans VH, Imhof HG et al (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4:311–317

    PubMed  CAS  Google Scholar 

  64. Hüll M, Fiebich BL, Lieb K et al (1996) Interleukin-6-associated inflammatory processes in Alzheimer’s disease: new therapeutic options. Neurobiol Aging 17:795–800

    PubMed  Google Scholar 

  65. Nelson PT, Head E, Schmitt FA, Davis PR, Neltner JH, Jicha GA, Abner EL, Smith CD, Eldik LJ, Kryscio RJ et al (2011) Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 121:571–587

    PubMed  Google Scholar 

  66. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    PubMed  CAS  Google Scholar 

  67. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    PubMed  CAS  Google Scholar 

  68. Tanzi RE, Vaula G, Romano DM, Mortilla M, Huang TL, Tupler RG, Wasco W, Hyman BT, Haines JL, Jenkins BJ (1992) Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases. Am J Hum Genet 51:273–282

    PubMed  CAS  Google Scholar 

  69. Wang G, Silva J, Dasgupta S, Bieberich E (2008) Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56:449–456

    PubMed  Google Scholar 

  70. Jana A, Pahan K (2004) Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. J Biol Chem 279(49):51451–51459

    PubMed  CAS  Google Scholar 

  71. Lee J-T, Xu J, Lee J-M, Ku G, Han X, Yang D-I, Chen S, Hsu CY (2004) Amyloid-β peptide induces oligodendrocyte death by activating the neutral sphingomyelinase–ceramide pathway. J Cell Biol 164:123–131

    PubMed  CAS  Google Scholar 

  72. Yang D-I, Yeh C-H, Chen S, Xu J, Hsu CY (2004) Neutral sphingomyelinase activation in endothelial and glial cell death induced by amyloid beta-peptide. Neurobiol Dis 17:99–107

    PubMed  CAS  Google Scholar 

  73. Xuan NT, Shumilina E, Kempe DS, Gulbins E, Lang F (2010) Sphingomyelinase dependent apoptosis of dendritic cells following treatment with amyloid peptides. J Neuroimmunol 219:81–89

    PubMed  Google Scholar 

  74. He X, Huang Y, Li B, Gong C-X, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31:398–408

    PubMed  CAS  Google Scholar 

  75. Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:67–72

    Google Scholar 

  76. Zeng C, Lee JT, Chen H, Chen S, Hsu CY, Xu J (2005) Amyloid-β peptide enhances tumor necrosis factor-α-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem 94:703–712

    PubMed  CAS  Google Scholar 

  77. Chen S, Lee JM, Zeng C, Chen H, Hsu CY, Xu J (2006) Amyloid beta peptide increases DP5 expression via activation of neutral sphingomyelinase and JNK in oligodendrocytes. J Neurochem 97:631–640

    PubMed  CAS  Google Scholar 

  78. Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278:19777–19783

    PubMed  CAS  Google Scholar 

  79. Alessenko AV, Bugrova AE, Dudnik LB (2004) Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem Soc Trans 32:144–146

    PubMed  CAS  Google Scholar 

  80. Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    PubMed  CAS  Google Scholar 

  81. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, Small GW, Miller B, Stevens JC (2001) Practice parameter: diagnosis of dementia (an evidence-based review) report of the quality standards subcommittee of the American Academy of Neurology. Neurology 56:1143–1153

    PubMed  CAS  Google Scholar 

  82. Shim YS, Morris JC (2011) Biomarkers predicting Alzheimer’s disease in cognitively normal aging. J Clin Neurol 7:60–68

    PubMed  Google Scholar 

  83. Das P, Murphy MP, Younkin LH, Younkin SG, Golde TE (2001) Reduced effectiveness of Abeta1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol Aging 22:721–727

    PubMed  CAS  Google Scholar 

  84. Boissé L, Gill MJ, Power C (2008) HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 26:799–819

    PubMed  Google Scholar 

  85. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia cell death. Differ 12:893–904

    CAS  Google Scholar 

  86. Gartner S (2000) HIV infection and dementia. Science 287:602–604

    PubMed  CAS  Google Scholar 

  87. Ghafouri M, Amini S, Khalili K, Sawaya B (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3:28

    PubMed  Google Scholar 

  88. Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198

    PubMed  CAS  Google Scholar 

  89. Sacktor N, Haughey N, Cutler R, Tamara A, Turchan J, Pardo C, Vargas D, Nath A (2004) Novel markers of oxidative stress in actively progressive HIV dementia. J Neuroimmunol 157:176–184

    PubMed  CAS  Google Scholar 

  90. Haughey NJ, Cutler RG, Tamara A, McArthur JC, Vargas DL, Pardo CA, Turchan J, Nath A, Mattson MP (2004) Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol 55:257–267

    PubMed  CAS  Google Scholar 

  91. Jana A, Pahan K (2004) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci 24:9531

    PubMed  CAS  Google Scholar 

  92. Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ (2009) Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57:734–743

    PubMed  Google Scholar 

  93. Brabers NACH, Nottet HSLM (2006) Role of the pro-inflammatory cytokines TNF-α and IL-1β in HIV-associated dementia. Eur J Clin Invest 36:447–458

    PubMed  CAS  Google Scholar 

  94. Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274:1917–1921

    PubMed  CAS  Google Scholar 

  95. Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74:1–8

    PubMed  CAS  Google Scholar 

  96. Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, Thomas D (2004) Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet 363:1491–1502

    PubMed  CAS  Google Scholar 

  97. Chambers BR, Donnan GA (2005) Carotid endarterectomy for asymptomatic carotid stenosis. Cochrane Database Syst Rev:CD001923

  98. Fisher M, Paganini-Hill A, Martin A, Cosgrove M, Toole JF, Barnett HJM, Norris J (2005) Carotid plaque pathology. Stroke 36:253–257

    PubMed  Google Scholar 

  99. Stoll G, Bendszus M (2006) Inflammation and atherosclerosis. Stroke 37:1923–1932

    PubMed  CAS  Google Scholar 

  100. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Amer Coll Cardiol 41:S15–S22

    Google Scholar 

  101. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    PubMed  CAS  Google Scholar 

  102. Weisgraber KH, Mahley RW, Kowal RC, Herz J, Goldstein JL, Brown MS (1990) Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J Biol Chem 265:22453–22459

    PubMed  CAS  Google Scholar 

  103. Windler E, Havel RJ (1985) Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res 26:556–565

    PubMed  CAS  Google Scholar 

  104. Kolmakova A, Kwiterovich P, Virgil D, Alaupovic P, Knight-Gibson C, Martin SF, Chatterjee S (2004) Apolipoprotein C-I induces apoptosis in human aortic smooth muscle cells via recruiting neutral sphingomyelinase. ATVB 24:264–269

    CAS  Google Scholar 

  105. Augé N, Maupas-Schwalm F, Elbaz M, Thiers JC, Waysbort A, Itohara S, Krell HW, Salvayre R, Nègre-Salvayre A (2004) Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110:571–578

    PubMed  Google Scholar 

  106. Tellier E, Nègre-Salvayre A, Bocquet B, Itohara S, Hannun YA, Salvayre R, Augé N (2007) Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol 27:2997–3007

    PubMed  CAS  Google Scholar 

  107. Coatrieux C, Sanson M, Negre-Salvayre A, Parini A, Hannun Y, Itohara S, Salvayre R, Auge N (2007) MAO-A-induced mitogenic signaling is mediated by reactive oxygen species, MMP-2, and the sphingolipid pathway. Free Radic Biol Med 43:80–89

    PubMed  CAS  Google Scholar 

  108. Augé N, Nikolova-Karakashian M, Carpentier S, Parthasarathy S, Nègre-Salvayre A, Salvayre R, Merrill AH Jr, Levade T (1999) Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274:21533–21538

    PubMed  Google Scholar 

  109. Heo SH, Cho CH, Kim HO, Jo YH, Yoon KS, Lee JH, Park JC, Park KC, Ahn TB, Chung KC et al (2011) Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: involvement of matrix metalloproteinases 2 and 9. J Clin Neurol 7:69–76

    PubMed  Google Scholar 

  110. Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256

    PubMed  CAS  Google Scholar 

  111. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    PubMed  CAS  Google Scholar 

  112. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel, T, Jahantigh MN, Lutgens E, et al. (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81

    Google Scholar 

  113. Kubota M, Narita K, Nakagomi T, Tamura A, Shimasaki H, Ueta N, Yoshida S (1996) Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res 18:337–341

    PubMed  CAS  Google Scholar 

  114. Nakane M, Kubota M, Nakagomi T, Tamura A, Hisaki H, Shimasaki H, Ueta N (2000) Lethal forebrain ischemia stimulates sphingomyelin hydrolysis and ceramide generation in the gerbil hippocampus. Neurosci Lett 296:89–92

    PubMed  CAS  Google Scholar 

  115. Hernandez OM, Discher DJ, Bishopric NH, Webster KA (2000) Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ Res 86:198–204

    PubMed  CAS  Google Scholar 

  116. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun YA, Umansky SR (1997) Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol 151:1257–1263

    PubMed  CAS  Google Scholar 

  117. Takahashi K, Ginis I, Nishioka R, Klimanis D, Barone FC, White RF, Chen Y, Hallenbeck JM (2004) Glucosylceramide synthase activity and ceramide levels are modulated during cerebral ischemia after ischemic preconditioning. J Cereb Blood Flow Metab 24:623–627

    PubMed  CAS  Google Scholar 

  118. Zhai ST, Liu GY, Xue F, Sun GP, Liang L, Chen W, Xu GD, Li JJ, Yang J, Liang TB (2009) Changes of sphingolipids profiles after ischemia-reperfusion injury in the rat liver. Chin Med J 122:3025–3031

    PubMed  CAS  Google Scholar 

  119. Hernandez et al. (2000) Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ Res

  120. Yu J, Novgorodov SA, Chudakova D, Zhu H, Bielawska A, Bielawski J, Obeid LM, Kindy MS, Gudz TI (2007) JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem 282:25940–25949

    PubMed  CAS  Google Scholar 

  121. Zhang DX, Fryer RM, Hsu AK, Zou AP, Gross GJ, Campbell WB, Li PL (2001) Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Res Cardiol 96:267–274

    PubMed  CAS  Google Scholar 

  122. Feng Y, LeBlanc MH (2006) N-tosyl-L-phenylalanyl-chloromethyl ketone reduces ceramide during hypoxic-ischemic brain injury in newborn rat. Eur J Pharmacol 551:34–40

    PubMed  CAS  Google Scholar 

  123. Tian HP, Qiu TZ, Zhao J, Li LX, Guo J (2009) Sphingomyelinase-induced ceramide production stimulate calcium-independent JNK and PP2A activation following cerebral ischemia. Brain Inj 23:1073–1080

    PubMed  Google Scholar 

  124. O’Brien NW, Gellings NM, Guo M, Barlow SB, Glembotski CC, Sabbadini RA (2003) Factor associated with neutral sphingomyelinase activation and its role in cardiac cell death. Circ Res 92:589–591

    PubMed  Google Scholar 

  125. Yoshimura S, Banno Y, Nakashima S, Hayashi K, Yamakawa H, Sawada M, Sakai N, Nozawa Y (1999) Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J Neurochem 73:675–683

    PubMed  CAS  Google Scholar 

  126. Brooks KJ, Hargreaves I, Bhakoo K, Sellwood M, O’Brien F, Noone M, Sakata Y, Cady E, Wylezinska M, Thornton J et al (2002) Delayed hypothermia prevents decreases in N-acetylaspartate and reduced glutathione in the cerebral cortex of the neonatal pig following transient hypoxia-ischaemia. Neurochem Res 27:1599–1604

    PubMed  CAS  Google Scholar 

  127. Singh A, Lee KJ, Lee CY, Goldfarb RD, Tsan MF (1989) Relation between myocardial glutathione content and extent of ischemia-reperfusion injury. Circulation 80:1795–1804

    PubMed  CAS  Google Scholar 

  128. Blaustein A, Deneke SM, Stolz RI, Baxter D, Healey N, Fanburg BL (1989) Myocardial glutathione depletion impairs recovery after short periods of ischemia. Circulation 80:1449–1457

    PubMed  CAS  Google Scholar 

  129. Leichtweis S, Ji LL (2001) Glutathione deficiency intensifies ischaemia-reperfusion induced cardiac dysfunction and oxidative stress. Acta Physiol Scand 172:1–10

    PubMed  CAS  Google Scholar 

  130. Soeda S, Tsuji Y, Ochiai T, Mishima K, Iwasaki K, Fujiwara M, Yokomatsu T, Murano T, Shibuya S, Shimeno H (2004) Inhibition of sphingomyelinase activity helps to prevent neuron death caused by ischemic stress. Neurochem Int 45:619–626

    PubMed  CAS  Google Scholar 

  131. Feng Y, LeBlanc MH (2003) Treatment of hypoxic-ischemic brain injury in newborn rats with TPCK 3 h after hypoxia decreases caspase-9 activation and improves neuropathologic outcome. Dev Neurosci 25:34–40

    PubMed  CAS  Google Scholar 

  132. Jin J, Hou Q, Mullen TD, Zeidan YH, Bielawski J, Kraveka JM, Bielawska A, Obeid LM, Hannun YA, Hsu YT (2008) Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J Biol Chem 283:26509–26517

    PubMed  CAS  Google Scholar 

  133. Bhuiyan MIH, Islam MN, Jung SY, Yoo HH, Lee YA, Jin C (2010) Involvement of ceramide in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation in primary cultured cortical neurons of rats. Biol Pharm Bull 33:11–17

    PubMed  CAS  Google Scholar 

  134. Liu J, Ginis I, Spatz M, Hallenbeck JM (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278:C144–C153

    PubMed  CAS  Google Scholar 

  135. Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293

    PubMed  CAS  Google Scholar 

  136. Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT et al (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111:4716–4722

    PubMed  CAS  Google Scholar 

  137. Demircan B, Dyer LM, Gerace M, Lobenhofer EK, Robertson KD, Brown KD (2009) Comparative epigenomics of human and mouse mammary tumors. Genes Chromosomes Cancer 48:83–97

    PubMed  CAS  Google Scholar 

  138. Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, Yonekawa Y, Kleihues P, Ohgaki H (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3:523–530

    PubMed  CAS  Google Scholar 

  139. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223; discussion 23–24

    Google Scholar 

  140. Sawada M, Nakashima S, Kiyono T, Nakagawa M, Yamada J, Yamakawa H, Banno Y, Shinoda J, Nishimura Y, Nozawa Y et al (2001) p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene 20:1368–1378

    PubMed  CAS  Google Scholar 

  141. Sawada M, Kiyono T, Nakashima S, Shinoda J, Naganawa T, Hara S, Iwama T, Sakai N (2004) Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: P53-mediated oxidant stress-dependent and -independent pathways. Cell Death Differ 11:997–1008

    PubMed  CAS  Google Scholar 

  142. Wang Y, Zhu S, Cloughesy TF, Liau LM, Mischel PS (2004) p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene 23:1283–1290

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf A. Hannun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horres, C.R., Hannun, Y.A. The Roles of Neutral Sphingomyelinases in Neurological Pathologies. Neurochem Res 37, 1137–1149 (2012). https://doi.org/10.1007/s11064-011-0692-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0692-y

Keywords

Navigation