Skip to main content

Advertisement

Log in

Depletion of Nrf2 Enhances Inflammation Induced by Oxyhemoglobin in Cultured Mice Astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element pathway has been proved to be the key regulator in reducing inflammatory damage, which is involved in subarachnoid hemorrhage (SAH). Here, in a traditional in vitro SAH model, we investigated the effect of Nrf2 depletion on pro-inflammatory cytokines production. Primary cultured astrocytes from Nrf2 wild type (WT) or knockout (KO) mouse were exposed or not exposed to oxyhemoglobin (OxyHb). Then the DNA-binding activity of transcription factor nuclear factor-κB (NF-κB) was detected by EMSA. The expression of TNF-α, IL-1β, IL-6 and MMP9 were evaluated. The activity of MMP9 was measured by Gelatin zymography. After exposure to OxyHb, NF-κB was activated and the expression of downstream pro-inflammatory cytokines was up-regulated in astrocytes. And such up-regulation was much higher in KO astrocytes than in WT astrocytes, which means more aggravated inflammation in Nrf2 deficient astrocytes. These results suggest that astrocytes participate in inflammatory process after SAH and the absence of Nrf2 may induce more aggressive inflammation through activation of NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang J, Zhu Y, Zhou D et al (2010) Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine 52:252–257

    Article  PubMed  CAS  Google Scholar 

  2. Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24:1101–1112

    Article  PubMed  CAS  Google Scholar 

  3. Shih AY, Johnson DA, Wong G et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  4. Memet S (2006) NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 72:1180–1195

    Article  PubMed  CAS  Google Scholar 

  5. Jin W, Zhu L, Guan Q et al (2008) Influence of Nrf2 genotype on pulmonary NF-kappaB activity and inflammatory response after traumatic brain injury. Ann Clin Lab Sci 38:221–227

    PubMed  CAS  Google Scholar 

  6. Mao L, Wang H, Qiao L et al (2010) Disruption of Nrf2 enhances the upregulation of nuclear factor-kappab activity, tumor necrosis factor-alpha, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediat Inflamm 2010:238321

    Article  Google Scholar 

  7. Zhao XD, Zhou YT, Zhang X et al (2010) Expression of NF-E2-related factor 2 (Nrf2) in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res 1358:221–227

    Article  PubMed  CAS  Google Scholar 

  8. Ma CX, Yin WN, Cai BW et al (2009) Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chin Med J (Engl) 122:1575–1581

    CAS  Google Scholar 

  9. Vikman P, Ansar S, Edvinsson L (2007) Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg 107:1015–1022

    Article  PubMed  CAS  Google Scholar 

  10. Sabri M, Kawashima A, Ai J et al (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238:163–171

    Article  PubMed  CAS  Google Scholar 

  11. Johnson DA, Andrews GK, Xu W et al (2002) Activation of the antioxidant response element in primary cortical neuronal cultures derived from transgenic reporter mice. J Neurochem 81:1233–1241

    Article  PubMed  CAS  Google Scholar 

  12. Pluta RM, Afshar JK, Boock RJ et al (1998) Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. J Neurosurg 88:557–561

    Article  PubMed  CAS  Google Scholar 

  13. Toda N, Kawakami M, Yoshida K (1991) Constrictor action of oxyhemoglobin in monkey and dog basilar arteries in vivo and in vitro. Am J Physiol 260:H420–H425

    PubMed  CAS  Google Scholar 

  14. Ishiguro M, Morielli AD, Zvarova K et al (2006) Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res 99:1252–1260

    Article  PubMed  CAS  Google Scholar 

  15. Suzuki H, Ayer R, Sugawara T et al (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–618

    Article  PubMed  CAS  Google Scholar 

  16. Fang Q, Chen G, Zhu W et al (2009) Influence of melatonin on cerebrovascular proinflammatory mediators expression and oxidative stress following subarachnoid hemorrhage in rabbits. Mediat Inflamm 2009:426346

    Article  Google Scholar 

  17. Bederson JB, Connolly ES Jr, Batjer HH et al (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40:994–1025

    Article  PubMed  Google Scholar 

  18. Pradilla G, Chaichana KL, Hoang S et al (2010) Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am 21:365–379

    Article  PubMed  Google Scholar 

  19. Luo C, Yi B, Chen Z et al (2011) PKGIalpha inhibits the proliferation of cerebral arterial smooth muscle cell induced by oxyhemoglobin after subarachnoid hemorrhage(1). Acta Neurochir Suppl 110:167–171

    Article  PubMed  Google Scholar 

  20. Nakagawa K, Hirai K, Aoyagi M et al (2000) Bloody cerebrospinal fluid from patients with subarachnoid hemorrhage alters intracellular calcium regulation in cultured human vascular endothelial cells. Neurol Res 22:588–596

    PubMed  CAS  Google Scholar 

  21. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263

    Article  PubMed  CAS  Google Scholar 

  22. Azcoitia I, Santos-Galindo M, Arevalo MA et al (2010) Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. Eur J Neurosci 32:1995–2002

    Article  PubMed  Google Scholar 

  23. Ohtaki H, Takaki A, Yin L et al (2003) Suppression of oxidative stress after transient focal ischemia in interleukin-1 knock out mice. Acta Neurochir Suppl 86:191–194

    Article  PubMed  CAS  Google Scholar 

  24. Barichello T, Pereira JS, Savi GD et al (2010) A kinetic study of the cytokine/chemokines levels and disruption of blood-brain barrier in infant rats after pneumococcal meningitis. J Neuroimmunol 233(1–2):12–17

    PubMed  Google Scholar 

  25. Rama RKV, Jayakumar AR, Tong X et al (2010) Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J Neuroinflamm 7:66

    Article  Google Scholar 

  26. Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    Article  PubMed  CAS  Google Scholar 

  27. Wang Z, Chen G, Zhu WW et al (2010) Activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the basilar artery after subarachnoid hemorrhage in rats. Ann Clin Lab Sci 40:233–239

    PubMed  CAS  Google Scholar 

  28. Yan W, Wang HD, Hu ZG et al (2008) Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett 431:150–154

    Article  PubMed  CAS  Google Scholar 

  29. van Muiswinkel FL, Kuiperij HB (2005) The Nrf2-ARE Signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 4:267–281

    Article  PubMed  Google Scholar 

  30. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  PubMed  CAS  Google Scholar 

  31. Jin W, Wang H, Yan W et al (2009) Role of Nrf2 in protection against traumatic brain injury in mice. J Neurotrauma 26:131–139

    Article  PubMed  Google Scholar 

  32. Khor TO, Yu S, Kong AN (2008) Dietary cancer chemopreventive agents—targeting inflammation and Nrf2 signaling pathway. Planta Med 74:1540–1547

    Article  PubMed  CAS  Google Scholar 

  33. Thimmulappa RK, Lee H, Rangasamy T et al (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116:984–995

    Article  PubMed  CAS  Google Scholar 

  34. Jin W, Wang HD, Hu ZG et al (2009) Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice. J Surg Res 157:251–260

    Article  PubMed  CAS  Google Scholar 

  35. Jeong WS, Kim IW, Hu R et al (2004) Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm Res 21:661–670

    Article  PubMed  CAS  Google Scholar 

  36. Xu C, Shen G, Chen C et al (2005) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495

    Article  PubMed  CAS  Google Scholar 

  37. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783:713–727

    Article  PubMed  CAS  Google Scholar 

  38. Nair S, Doh ST, Chan JY et al (2008) Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer 99:2070–2082

    Article  PubMed  CAS  Google Scholar 

  39. Hu R, Saw CL, Yu R et al (2010) Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal 13:1679–1698

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (No. 81070974), the Jiangsu Provincial Key Subject (X4200722), and Jinling Hospital of Nanjing, China (2010Q017).

Conflict of interest

There is no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, H., Wang, H., Zhu, L. et al. Depletion of Nrf2 Enhances Inflammation Induced by Oxyhemoglobin in Cultured Mice Astrocytes. Neurochem Res 36, 2434–2441 (2011). https://doi.org/10.1007/s11064-011-0571-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0571-6

Keywords

Navigation