Skip to main content

Advertisement

Log in

p53- and Bax-Mediated Apoptosis in Injured Rat Spinal Cord

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) induces a series of endogenous biochemical changes that lead to secondary degeneration, including apoptosis. p53-mediated mitochondrial apoptosis is likely to be an important mechanism of cell death in spinal cord injury. However, the signaling cascades that are activated before DNA fragmentation have not yet been determined. DNA damage-induced, p53-activated neuronal cell death has already been identified in several neurodegenerative diseases. To determine DNA damage-induced, p53-mediated apoptosis in spinal cord injury, we performed RT-PCR microarray and analyzed 84 DNA damaging and apoptotic genes. Genes involved in DNA damage and apoptosis were upregulated whereas anti-apoptotic genes were downregulated in injured spinal cords. Western blot analysis showed the upregulation of DNA damage-inducing protein such as ATM, cell cycle checkpoint kinases, 8-hydroxy-2′-deoxyguanosine (8-OHdG), BRCA2 and H2AX in injured spinal cord tissues. Detection of phospho-H2AX in the nucleus and release of 8-OHdG in cytosol were demonstrated by immunohistochemistry. Expression of p53 was observed in the neurons, oligodendrocytes and astrocytes after spinal cord injury. Upregulation of phospho-p53, Bax and downregulation of Bcl2 were detected after spinal cord injury. Sub-cellular distribution of Bax and cytochrome c indicated mitochondrial-mediated apoptosis taking place after spinal cord injury. In addition, we carried out immunohistochemical analysis to confirm Bax translocation into the mitochondria and activated p53 at Ser392. Expression of APAF1, caspase 9 and caspase 3 activities confirmed the intrinsic apoptotic pathway after SCI. Activated p53 and Bax mitochondrial translocation were detected in injured spinal neurons. Taken together, the in vitro data strengthened the in vivo observations of DNA damage-induced p53-mediated mitochondrial apoptosis in the injured spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ANOVA:

Analysis of variance

APAF1:

Apoptotic protease activating factor 1

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3 related

BRCA2:

Breast cancer 2, early onset

BSA:

Bovine serum albumin

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonic acid

CHK2:

Checkpoint homolog (S. pombe)

CNS:

Central nervous system

DAB:

Diaminobenzidine

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

DNA:

Deoxyribonucleic acid

DSB:

Double-strand breaks

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GFAP:

Glial fibrillary acidic protein

H2AX:

Histone H2A.X

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HRP:

Horseradish peroxidase

hUCB:

Human umbilical cord blood derived stem cells

Olig2:

Oligodendrocyte transcription factor 2

PAGE:

Poly acrylamide gel electrophoresis

PBS:

Phosphate buffered saline

RT-PCR:

Reverse Transcription based Polymerase chain reaction

PMSF:

Phenyl methane sulfonyl fluoride

SCI:

Spinal cord injury

SDS:

Sodium dodecyl sulfate

SSB:

Single-strand breaks

STP:

Staurosporine

TAE:

Tris-acetate-EDTA

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Hong LZ, Zhao XY, Zhang HL (2010) p53-mediated neuronal cell death in ischemic brain injury. Neurosci Bull 26:232–240

    Article  PubMed  CAS  Google Scholar 

  2. Love S (2003) Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry 27:267–282

    Article  PubMed  CAS  Google Scholar 

  3. Dasari VR, Veeravalli KK, Tsung AJ et al (2009) Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury. J Neurotrauma 26:2057–2069

    Article  PubMed  Google Scholar 

  4. McEwen ML, Springer JE (2005) A mapping study of caspase-3 activation following acute spinal cord contusion in rats. J Histochem Cytochem 53:809–819

    Article  PubMed  CAS  Google Scholar 

  5. Morrison RS, Kinoshita Y, Johnson MD et al (2003) p53-dependent cell death signaling in neurons. Neurochem Res 28:15–27

    Article  PubMed  CAS  Google Scholar 

  6. Vekrellis K, McCarthy MJ, Watson A et al (1997) Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development 124:1239–1249

    PubMed  CAS  Google Scholar 

  7. Morrison RS, Kinoshita Y (2000) The role of p53 in neuronal cell death. Cell Death Differ 7:868–879

    Article  PubMed  CAS  Google Scholar 

  8. Eve DJ, Dennis JS, Citron BA (2007) Transcription factor p53 in degenerating spinal cords. Brain Res 1150:174–181

    Article  PubMed  CAS  Google Scholar 

  9. Thornborrow EC, Patel S, Mastropietro AE et al (2002) A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21:990–999

    Article  PubMed  CAS  Google Scholar 

  10. Gross A, Jockel J, Wei MC et al (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17:3878–3885

    Article  PubMed  CAS  Google Scholar 

  11. Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834

    Article  PubMed  CAS  Google Scholar 

  12. Wolter KG, Hsu YT, Smith CL et al (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292

    Article  PubMed  CAS  Google Scholar 

  13. Desagher S, Osen-Sand A, Nichols A et al (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  PubMed  CAS  Google Scholar 

  14. Nomura M, Shimizu S, Ito T et al (1999) Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res 59:5542–5548

    PubMed  CAS  Google Scholar 

  15. Brewer GJ, Price PJ (1996) Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. Neuroreport 7:1509–1512

    Article  PubMed  CAS  Google Scholar 

  16. Lee SM, Yune TY, Kim SJ et al (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20:1017–1027

    Article  PubMed  Google Scholar 

  17. Liu XZ, Xu XM, Hu R et al (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406

    PubMed  CAS  Google Scholar 

  18. Dasari VR, Veeravalli KK, Saving KL et al (2008) Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiol Dis 32:486–498

    Article  PubMed  CAS  Google Scholar 

  19. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    Article  PubMed  CAS  Google Scholar 

  20. Xiang H, Kinoshita Y, Knudson CM et al (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18:1363–1373

    PubMed  CAS  Google Scholar 

  21. Chong MJ, Murray MR, Gosink EC et al (2000) Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci USA 97:889–894

    Article  PubMed  CAS  Google Scholar 

  22. Johnson MD, Xiang H, London S et al (1998) Evidence for involvement of Bax and p53, but not caspases, in radiation-induced cell death of cultured postnatal hippocampal neurons. J Neurosci Res 54:721–733

    Article  PubMed  CAS  Google Scholar 

  23. Amar AP, Levy ML (1999) Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44:1027–1039

    Article  PubMed  CAS  Google Scholar 

  24. Crowe MJ, Bresnahan JC, Shuman SL et al (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  PubMed  CAS  Google Scholar 

  25. Schwab JM, Conrad S, Monnier PP et al (2005) Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM). Eur J Neurosci 21:1569–1576

    Article  PubMed  Google Scholar 

  26. Olson MO (2004) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004:e10

  27. Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    Article  PubMed  CAS  Google Scholar 

  28. Kalita K, Makonchuk D, Gomes C et al (2008) Inhibition of nucleolar transcription as a trigger for neuronal apoptosis. J Neurochem 105:2286–2299

    Article  PubMed  CAS  Google Scholar 

  29. Parlato R, Kreiner G, Erdmann G et al (2008) Activation of an endogenous suicide response after perturbation of rRNA synthesis leads to neurodegeneration in mice. J Neurosci 28:12759–12764

    Article  PubMed  CAS  Google Scholar 

  30. Keramaris E, Hirao A, Slack RS et al (2003) Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage. J Biol Chem 278:37782–37789

    Article  PubMed  CAS  Google Scholar 

  31. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    Article  PubMed  CAS  Google Scholar 

  32. Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818

    Article  PubMed  CAS  Google Scholar 

  33. Cregan SP, MacLaurin JG, Craig CG et al (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19:7860–7869

    PubMed  CAS  Google Scholar 

  34. Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7:535–545

    Article  PubMed  CAS  Google Scholar 

  35. Manev H, Kharlamov A, Armstrong DM (1994) Photochemical brain injury in rats triggers DNA fragmentation, p53 and HSP72. Neuroreport 5:2661–2664

    Google Scholar 

  36. Shaw P, Bovey R, Tardy S et al (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 89:4495–4499

    Article  PubMed  CAS  Google Scholar 

  37. Wyllie A (1997) Apoptosis. Clues in the p53 murder mystery. Nature 389:237–238

    Article  PubMed  CAS  Google Scholar 

  38. Sandig V, Brand K, Herwig S et al (1997) Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 3:313–319

    Article  PubMed  CAS  Google Scholar 

  39. Ford JM, Hanawalt PC (1997) Role of DNA excision repair gene defects in the etiology of cancer. Curr Top Microbiol Immunol 221:47–70

    Article  PubMed  CAS  Google Scholar 

  40. Chen G, Branton PE, Shore GC (1995) Induction of p53-independent apoptosis by hygromycin B: suppression by Bcl-2 and adenovirus E1B 19-kDa protein. Exp Cell Res 221:55–59

    Article  PubMed  CAS  Google Scholar 

  41. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  42. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    Article  PubMed  CAS  Google Scholar 

  43. Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Noorjehan Ali for technical assistance. We thank Shellee Abraham for manuscript preparation, and Sushma Jasti and Diana Meister for review of the manuscript. This study was funded by a grant from Caterpillar Inc., Peoria, IL and OSF Saint Francis Inc., Peoria, IL (J.S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasti S. Rao.

Additional information

Ramaprasada Rao Kotipatruni and Venkata Ramesh Dasari contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2011_530_MOESM1_ESM.tif

Supplementary Figure 1. Activation of p53 in spinal neurons in vitro . (A) Immunoblot analysis of p53 and phospho-p53 in STP (2µM)-treated spinal neurons. GAPDH was used as a control. (B) Quantitation of (A). Error bars indicate mean ± SE. Significant at P < 0.05. (C) Confocal scanning microscopic images demonstrate p53 expression in STP-treated spinal neurons. (D) Immunocytochemistry of phospho-p53 in STP-treated spinal neurons. DAPI was used for nuclear staining. Bar = 200µm. (TIFF 7831 kb)

11064_2011_530_MOESM2_ESM.tif

Supplementary Figure 2. Mitochondrial Bax-mediated apoptosis in injured spinal neurons. (A) Fluorescent microscopic images demonstrate p53 expression with Bax co-localization in STP-treated spinal neurons. Bax is conjugated with Alexa Fluor 488 secondary antibody and p53 is conjugated with Alexa Fluor 594 secondary antibodies. (B) Bax translocation into the mitochondria. Bax expression showed by green fluorescence and HSP60 used to recognize the mitochondrial location. Bax is conjugated with Alexa Fluor 488 secondary antibody and HSP60 is conjugated with Alexa Fluor 594 secondary antibodies. Bar = 200µm. n=3. (TIFF 6926 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotipatruni, R.R., Dasari, V.R., Veeravalli, K.K. et al. p53- and Bax-Mediated Apoptosis in Injured Rat Spinal Cord. Neurochem Res 36, 2063–2074 (2011). https://doi.org/10.1007/s11064-011-0530-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0530-2

Keywords

Navigation