Skip to main content

Advertisement

Log in

Doxycycline Attenuates Peripheral Inflammation in Rat Experimental Autoimmune Neuritis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system and widely-used animal model of human inflammatory demyelinating polyradiculoneuropathies. Doxycycline is a well-known antibiotic and has been reported to have neuroprotective and anti-inflammatory effects. Here we investigated the effects of doxycycline on rat EAN. Therapeutic treatment with doxycycline (40 mg/kg body weight daily from the Day 9 to Day 14 post immunization) significantly attenuated the severity of EAN, decreased inflammatory infiltration of macrophages, B- and T-cells and demyelination in sciatic nerves of EAN rats. Pro-inflammatory molecules including matrixmetalloproteinase-9, inducible nitric oxide synthase and interleukin-17 were greatly decreased in sciatic nerves by administration of doxycycline as well. Taken together, our data showed that doxycycline could effectively suppress the peripheral inflammation to improve outcome of EAN, which suggests that doxycycline may be considered as a potential candidate of pharmacological treatment for neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hughes RA, Cornblath DR (2005) Guillain-Barré syndrome. Lancet 366:1653–1666

    Article  PubMed  CAS  Google Scholar 

  2. Milner P, Lovelidge CA, Taylor WA et al (1987) P0 myelin protein produces experimental allergic neuritis in Lewis rats. J Neurol Sci 79:275–285

    Article  PubMed  CAS  Google Scholar 

  3. Yrjanheikki J, Keinanen R, Pellikka M et al (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  PubMed  CAS  Google Scholar 

  4. Yrjanheikki J, Tikka T, Keinanen R et al (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  PubMed  CAS  Google Scholar 

  5. Popovic N, Schubart A, Goetz BD et al (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51:215–223

    Article  PubMed  CAS  Google Scholar 

  6. Wu DC, Jackson-Lewis V, Vila M et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  7. Griffin MO, Fricovsky E, Ceballos G et al (2010) Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Am J Physiol Cell Physiol 299:539–548

    Article  Google Scholar 

  8. Paemen L, Martens E, Norga K et al (1996) The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52:105–111

    Article  PubMed  CAS  Google Scholar 

  9. Golub LM, Ramamurthy NS, McNamara TF et al (1991) Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 2:297–321

    PubMed  CAS  Google Scholar 

  10. Gabler WL, Creamer HR (1991) Suppression of human neutrophil functions by tetracyclines. J Periodontal Res 26:52–58

    Article  PubMed  CAS  Google Scholar 

  11. Jantzie LL, Cheung PY, Todd KG (2005) Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 25:314–324

    Article  PubMed  CAS  Google Scholar 

  12. Jantzie LL, Rauw GA, Todd KG (2006) The effects of doxycycline administration on amino acid neurotransmitters in an animal model of neonatal hypoxia-ischemia. Neurochem Int 49:717–728

    Article  PubMed  CAS  Google Scholar 

  13. Zouboulis CC, Piquero-Martin J (2003) Update and future of systemic acne treatment. Dermatology 206:37–53

    Article  PubMed  CAS  Google Scholar 

  14. Stirling DP, Koochesfahani KM, Steeves JD et al (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    Article  PubMed  CAS  Google Scholar 

  15. Hartung HP, Schäfer B, Heininger K et al (1988) The role of macrophages and eicosanoids in the pathogenesis of experimental allergic neuritis Serial clinical, electrophysiological, biochemical and morphological observations. Brain 111:1039–1059

    Article  PubMed  Google Scholar 

  16. Leifeld L, Fielenbach M, Dumoulin FL et al (2002) Inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression in fulminant hepatic failure. J Hepatol 37:613–619

    Article  PubMed  CAS  Google Scholar 

  17. Schabet M, Whitaker JN, Schott K et al (1991) The use of protease inhibitors in experimental allergic neuritis. J Neuroimmunol 31:265–272

    Article  PubMed  CAS  Google Scholar 

  18. Hughes PM, Wells GM, Clements JM (1998) Matrix metalloproteinase expression during experimental autoimmune neuritis. Brain 121:481–494

    Article  PubMed  Google Scholar 

  19. Kieseier BC, Clements JM, Pischel HB et al (1998) Matrix metalloproteinases MMP-9 and MMP-7 are expressed in experimental autoimmune neuritis and the Guillain-Barré syndrome. Ann Neurol 43:427–434

    Article  PubMed  CAS  Google Scholar 

  20. Brundula V, Rewcastle NB, Metz LM et al (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308

    Article  PubMed  Google Scholar 

  21. Newman JP, Verity AN, Hawatmeh S et al (1996) Ciliary neurotrophic factors enhances peripheral nerve regeneration. Arch Otolaryngol Head Neck Surg 122:399–403

    PubMed  CAS  Google Scholar 

  22. Opdenakker G, Van Damme J (1994) Cytokine-regulated proteases in autoimmune diseases. Immunol Today 15:103–107

    Article  PubMed  CAS  Google Scholar 

  23. Curci JA, Mao D, Bohner DG et al (2001) Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms. J Vasc Surg 31:325–342

    Article  Google Scholar 

  24. Saliba E, Henrot A (2001) Inflammatory mediators and neonatal brain damage. Biol Neonate 79:224–227

    Article  PubMed  CAS  Google Scholar 

  25. Bettelli E, Korn T, Oukka M et al (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057

    Article  PubMed  CAS  Google Scholar 

  26. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348

    Article  PubMed  CAS  Google Scholar 

  27. Lee Y, Shin T (2002) Expression of constitutive endothelial and inducible nitric oxide synthase in the sciatic nerve of Lewis rats with experimental autoimmune neuritis. J Neuroimmunol 126:78–85

    Article  PubMed  CAS  Google Scholar 

  28. Zhu J, Mix E, Link H (1998) Cytokine production and the pathogenesis of experimental autoimmune neuritis and Guillain-Barré syndrome. J Neuroimmunol 84:40–52

    Article  PubMed  CAS  Google Scholar 

  29. Abramson SB, Amin AR, Clancy RM et al (2001) The role of nitric oxide in tissue destruction. Best Pract Res Clin Rheumatol 15:831–845

    Article  PubMed  CAS  Google Scholar 

  30. Conti G, Rostami A, Scarpini E et al (2004) Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Exp Neurol 187:350–358

    Article  PubMed  CAS  Google Scholar 

  31. Zhang ZY, Zhang ZR, Fauser U et al (2009) Improved outcome of EAN, an animal model of GBS, through amelioration of peripheral and central inflammation by minocycline. J Cell Mol Med 13:341–351

    Article  PubMed  CAS  Google Scholar 

  32. Cunha BA (2006) New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited. Med Clin North Am 90:1089–1107

    Article  PubMed  CAS  Google Scholar 

  33. NINDS NET-PD Investigators (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150

    Article  Google Scholar 

  34. Toth A, Lesser ML, Naus G et al (1988) Effect of doxycycline on pre-menstrual syndrome: a double-blind randomized clinical trial. J Int Med Res 16:270–279

    PubMed  CAS  Google Scholar 

  35. Fox C, Dingman A, Derugin N et al (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25:1138–1149

    Article  PubMed  CAS  Google Scholar 

  36. Kraus RL, Pasieczny R, Lariosa-Willingham K et al (2005) Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94:819–827

    Article  PubMed  CAS  Google Scholar 

  37. Yao JS, Shen F, Young WL et al (2007) Comparison of doxycycline and minocycline in the inhibition of VEGF-induced smooth muscle cell migration. Neurochem Int 50:524–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Chenju Yi gratefully acknowledged China Scholarship Council. This investigation was partly supported by National Nature Science Foundation of China (No: 81070954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiren Zhang.

Additional information

C. Yi and Z. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, C., Zhang, Z., Wang, W. et al. Doxycycline Attenuates Peripheral Inflammation in Rat Experimental Autoimmune Neuritis. Neurochem Res 36, 1984–1990 (2011). https://doi.org/10.1007/s11064-011-0522-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0522-2

Keywords

Navigation