Skip to main content

Advertisement

Log in

Regulatory Mechanisms of Nervous Systems with Glycosphingolipids

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A number of studies have suggested functions of sialic acid-containing glycosphingolipids (gangliosides) in the nervous system. However, results of analyses of the mutant mice lacking gangliosides suggested that they play crucial roles in the maintenance of integrity and repair of the nervous tissues. Furthermore, results of double knockout mice lacking all gangliosides except GM3 (GM3-only mice) suggested that deficiency of gangliosides induced complement activation and inflammation, leading to neurodegeneration. Generation of triple knockout mice by mating GM3-only mice and C3-deficient mice verified the involvement of complement systems in the inflammation and neurodegeneration. For the mechanisms of the complement activation, functional disorders of complement-regulatory proteins such as CD55 and CD59, which belong to GPI-anchored proteins, should be main factors. These results suggested that normal composition of gangliosides is essential for the maintenance of lipid rafts. Therefore, it was suggested that regulation of the complement systems and suppression of the inflammation should be important for the treatment of neurodegeneration, having common aspects with other neurodegenerative diseases such as Alzheimer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klenk E, Vater W, Bartsch G (1957) The storage of gangliosides in nervous tissue in Tay-Sachs disease and the changes in material preserved in formalin. J Neurochem 1:203–206

    Article  PubMed  CAS  Google Scholar 

  2. Schengrund CL (1990) The role(s) of gangliosides in neural differentiation and repair: a perspective. Brain Res Bull 24:131–141

    Article  PubMed  CAS  Google Scholar 

  3. Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 31:18713–18716

    Google Scholar 

  4. Nagai Y (1995) Functional roles of gangliosides in bio-signaling. Behav Brain Res 66:99–104

    Article  PubMed  CAS  Google Scholar 

  5. Yu RK, Macala LJ, Taki T et al (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    Article  PubMed  CAS  Google Scholar 

  6. Furukawa K, Tsuchida A, Furukawa K (2007) Biosynthesis of Glycolipids. In: Kamerling JP, Boons GJ, Lee YC et al (eds) Comprehensive glycoscience From Chemistry to Systems Biology. Elsevier, Oxford, pp 105–114

    Chapter  Google Scholar 

  7. Honke K, Hirahara Y, Dupree J et al (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci USA 99:4227–4232

    Article  PubMed  CAS  Google Scholar 

  8. Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides, but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667

    Article  PubMed  CAS  Google Scholar 

  9. Sugiura Y, Furukawa K, Tajima O et al (2005) Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience 135:167–1178

    Article  Google Scholar 

  10. Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    Article  PubMed  CAS  Google Scholar 

  11. Furukawa K, Tokuda N, Okuda T et al (2004) Glycosphingolipids in engineered mice: insights into function. Semin Cell Dev Biol 15:389–396

    Article  PubMed  CAS  Google Scholar 

  12. Furukawa K, Aixinjueluo W, Kasama T (2008) Disruption of GM2/GD2 synthase gene resulted in neo-expression of 9-O-acetyl GD3 irrespective of Tis21. J Neurochem 105:1057–1066

    Article  PubMed  CAS  Google Scholar 

  13. Okada M, Itoh M, Haraguchi M et al (2002) b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis, but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277:1633–1636

    Article  PubMed  CAS  Google Scholar 

  14. Shevchuk NA, Hathout Y, Epifano O et al (2007) Alteration of ganglioside synthesis by GM3 synthase knockout in murine embryonic fibroblasts. Biochim Biophys Acta 1771:1226–1234

    PubMed  CAS  Google Scholar 

  15. Yamashita T, Wada R, Sasaki T et al (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    Article  PubMed  CAS  Google Scholar 

  16. Kittaka D, Itoh M, Ohmi Y et al (2008) Impaired hypoglossal nerve regeneration in complex ganglioside-lacking mutant mice: down-regulation of neurotrophic factors and receptors as possible mechanisms. Glycobiology 18:509–516

    Article  PubMed  CAS  Google Scholar 

  17. Inoue M, Fujii Y, Furukawa K et al (2002) Refractory skin injury in the complex knock-out mice expressing only GM3 ganglioside. J Biol Chem 277:29881–29888

    Article  PubMed  CAS  Google Scholar 

  18. Tajima O, Egashira N, Ohmi Y et al (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198:74–82

    Article  PubMed  Google Scholar 

  19. Tajima O, Egashira N, Ohmi Y et al (2010) Dysfunction of muscarinic acetylcholine receptors as a substantial basis for progressive neurological deterioration in GM3-only mice. Behav Brain Res 206:101–108

    Article  PubMed  CAS  Google Scholar 

  20. Kawai H, Allende ML, Wada R et al (2001) Mice expressing only monosialo- ganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276:6885–6888

    Article  PubMed  CAS  Google Scholar 

  21. Ohmi Y, Tajima O, Ohkawa Y et al (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci USA 106:22405–22410

    Article  PubMed  CAS  Google Scholar 

  22. Yamashita T, Wu YP, Sandhoff R et al (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102:2725–2730

    Article  PubMed  CAS  Google Scholar 

  23. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  24. Tenner AJ (2001) Complement in Alzheimer’s disease: opportunities for modulating protective and pathogenic events. Neurobiol Aging 22:849–861

    Article  PubMed  CAS  Google Scholar 

  25. McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    Article  PubMed  CAS  Google Scholar 

  26. van Beek J, Elward K, Gasque P (2003) Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann NY Acad Sci 992:56–71

    Article  PubMed  Google Scholar 

  27. Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  PubMed  CAS  Google Scholar 

  28. Jeyakumar M, Thomas R, Elliot-Smith E et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126(Pt 4):974–987

    Article  PubMed  CAS  Google Scholar 

  29. Wada R, Tifft CJ, Proia RL (2000) Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc Natl Acad Sci USA 97:10954–10959

    Article  PubMed  CAS  Google Scholar 

  30. Hayase T, Shimizu J, Goto T, Nozaki Y et al (2010) Unilaterally and rapidly progressing white matter lesion and elevated cytokines in a patient with Tay-Sachs disease. Brain Dev 32:244–247

    Article  PubMed  Google Scholar 

  31. Baudry M, Yao Y, Simmons D et al (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184:887–903

    Article  PubMed  CAS  Google Scholar 

  32. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  33. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  34. Ohmi Y, Tajima O, Ohkawa Y et al (2011) Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem 116:926–935

    Article  PubMed  CAS  Google Scholar 

  35. Kabayama K, Sato T, Saito K et al (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104:13678–13683

    Article  PubMed  CAS  Google Scholar 

  36. Toledo MS, Suzuki E, Handa K et al (2005) Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 280:16227–16234

    Article  PubMed  CAS  Google Scholar 

  37. Mitsuda T, Furukawa K, Fukumoto S et al (2002) Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 277:11239–11246

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Q, Furukawa K, Chen HH et al (2006) Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. J Biol Chem 281:18145–18155

    Article  PubMed  CAS  Google Scholar 

  39. Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103(Suppl 1):135–142

    Article  PubMed  CAS  Google Scholar 

  40. Fujita A, Cheng J, Hirakawa M et al (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18:2112–2122

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa.

Additional information

Special Issue: In Honor of Dr. Robert Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, K., Ohmi, Y., Ohkawa, Y. et al. Regulatory Mechanisms of Nervous Systems with Glycosphingolipids. Neurochem Res 36, 1578–1586 (2011). https://doi.org/10.1007/s11064-011-0494-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0494-2

Keywords

Navigation