McDonald I (1998) Pathophysiology of multiple sclerosis. In: Compston A, Ebers G, Lassmann H et al (eds) McAlpine’s multiple sclerosis. Churchill Livingstone, London, pp 359–378
Google Scholar
Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302
PubMed
Article
CAS
Google Scholar
Pozzilli C, Romano S, Cannoni S (2002) Epidemiology and current treatment of multiple sclerosis in Europe today. J Rehabil Res Develop 39:175–186
Google Scholar
Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150
PubMed
Article
CAS
Google Scholar
Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803
PubMed
Article
CAS
Google Scholar
Alimonti A, Ristori G, Giubilei F et al (2007) Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. NeuroToxicology 28:450–456
PubMed
Article
CAS
Google Scholar
Toncev G, Milicic B, Toncev S et al (2002) High-dose methylprednisolone therapy in multiple sclerosis increases serum uric acid levels. Clin Chem Lab Med 40:505–508
PubMed
Article
CAS
Google Scholar
Shorvon S (2001) Pyrrolidone derivatives. Lancet 358:1885–1892
PubMed
Article
CAS
Google Scholar
Kessler J, Thiel A, Karbe H et al (2000) Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31:2112–2116
PubMed
CAS
Google Scholar
Waegemans T, Wilsher CR, Danniau A et al (2002) Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord 13:217–224
PubMed
Article
CAS
Google Scholar
Holinski S, Claus B, Alaaraj N et al (2008) Cerebroprotective effect of piracetam in patients undergoing coronary bypass surgery. Med Sci Monit 14:PI53–PI157
PubMed
Google Scholar
Ince Gunal D, Agan K, Afsar N et al (2008) The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients. J Clin Pharm Ther 33:175–178
PubMed
Article
CAS
Google Scholar
Müller WE, Koch S, Scheuer K et al (1997) Effects of piracetam on membrane fluidity in the aged mouse, rat, and human brain. Biochem Pharmacol 53(2):135–140
PubMed
Article
Google Scholar
Heiss WD, Ilsen HW, Wagner R et al (1983) Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin, pp 162–168
Google Scholar
Eckert GP, Cairns NJ, Muller WE (1999) Piracetam reverses hippocampal membrane alterations in Alzheimer’s disease. J Neural Transm 106:757–761
PubMed
Article
CAS
Google Scholar
Mingeot-Leclercq MP, Lins L, Bensliman M et al (2003) Piracetam inhibits the lipid-destabilising effect of the amyloid peptide Abeta C-terminal fragment. Biochim Biophys Acta 1609:28–38
PubMed
Article
CAS
Google Scholar
DeNoble VJ, Repetti SJ, Gelpke LW et al (1986) Vinpocetine: nootropic effects on scopolamine-induced and hypoxia-induced retrieval deficits of a step-through passive avoidance response in rats. Pharmacol Biochem Behav 24:1123–1128
PubMed
Article
CAS
Google Scholar
Vas A, Gulyas B, Szabo Z et al (2002) Clinical and non-clinical investigations using positron emission tomography, near infrared spectroscopy and transcranial Doppler methods on the neuroprotective drug vinpocetine: a summary of evidences. J Neurol Sci 203–204:259–262
PubMed
Article
Google Scholar
Van Staveren WCG, Markerink Ittersum M, Steinbusch HW et al (2001) The effects of phosphodiesterase inhibition on cyclic GMP and cyclic AMP accumulation in the hippocampus of the rat. Brain Res 888:275–286
PubMed
Article
Google Scholar
Sitges M, Galvan E, Nekrassov V (2005) Vinpocetine blockade of sodium channels inhibits the rise in sodium and calcium induced by 4-aminopyridine in synaptosomes. Neurochem Int 46:533–540
PubMed
Article
CAS
Google Scholar
Santos MS, Duarte AI, Morbra PI et al (2000) Synaptosomal response to oxidative stress: effect of vinpocetine. Free Radic Res 32:57–66
PubMed
Article
CAS
Google Scholar
Horvath BH, Marton Z, Halmosi R et al (2002) In vitro antioxidant properties of pentoxifylline, piracetam, and vinpocetine. Clin Neuropharmacol 25:37–42
PubMed
Article
CAS
Google Scholar
Giurgea C (1973) The nootropic approach to the pharmacology of the integrative activity of the brain. Cond Reflex 8:108–115
PubMed
CAS
Google Scholar
Xerri C, Zennou-Azougui Y, Coq JO (2003) Neuroprotective effects on somatotopic maps resulting from piracetam treatment and environmental enrichment after focal cortical injury. ILAR J 44:110–124
PubMed
CAS
Google Scholar
Kalkan E, Keskin F, Kaya B et al (2011) Effects of iloprost and piracetam in spinal cord ischemia–reperfusion injury in the rabbit. Spinal Cord 49:81–86
PubMed
Article
CAS
Google Scholar
Pereira C, Agostinho P, Oliveira CR (2000) Vinpocetine attenuates the metabolic dysfunction induced by amyloid β-peptides in PC12 cells. Free Radic Res 33:497–506
PubMed
Article
CAS
Google Scholar
Graça DL, Bondan EF, Pereira LA et al. (2001) Behaviour of oligodendrocytes and Schwann cells in an experimental model of toxic demyelination of the central nervous system. Arq Neuropsiquiatr 59(2-B):358–361
Google Scholar
Mazzanti CM, Spanevello RM, Pereira LB et al (2006) Acetylcholinesterase activity in rats experimentally demyelinated with ethidium bromide and treated with interferon beta. Neurochem Res 31:1027–1034
PubMed
Article
CAS
Google Scholar
Ruiz-Larrea MB, Leal AM, Liza M et al (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388
PubMed
Article
CAS
Google Scholar
Koracevic D, Koracevic G, Djordjevic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361
PubMed
Article
CAS
Google Scholar
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem 82:70–77
PubMed
Article
CAS
Google Scholar
Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–25
CAS
Google Scholar
Ellman GL, Courtney KD Jr (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–90
PubMed
Article
CAS
Google Scholar
Gorum V, Proinov A, Baltescu V et al (1978) Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparation. Anal Biochem 86:324–326
Article
Google Scholar
Moshage H, Kok B, Huizenga JR (1995) Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem 41:892–896
PubMed
CAS
Google Scholar
Liu R, Lui IY, Bi X et al (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–8531
PubMed
Article
CAS
Google Scholar
Besler HT, Comoğlu S (2006) Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with multiple sclerosis. Nutr Neurosci 6:189–196
Article
Google Scholar
Cnubben NHP, Rietjens IMCM, Wortelboer H et al (2001) The interplay of glutathione related processes in antioxidant defense. Environ Toxicol Pharmacol 10:141–152
Article
CAS
Google Scholar
Ng F, Berk M, Dean O et al (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876
PubMed
Article
CAS
Google Scholar
Schulz JB, Lindenau J, Seyfried J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911
PubMed
Article
CAS
Google Scholar
Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23:153–165
PubMed
Article
CAS
Google Scholar
Liñares D, Taconis M, Maña P et al (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26:12672–12681
PubMed
Article
Google Scholar
Speciale L, Sarasella M, Ruzzante S et al (2000) Endothelin and nitric oxide levels in cerebrospinal fluid of patients with multiple sclerosis. J Neuro Virol 6(Suppl 20):S62–S66
CAS
Google Scholar
Ramsaransing GS, Teelken A, Arutjunyan AV et al (2004) Peripheral blood leukocyte NO production in MS patients with a benign vs progressive course. Neurology 62(2):239–242
PubMed
CAS
Google Scholar
Moncada S, Bolaños JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689
PubMed
Article
CAS
Google Scholar
Ozkan S, Ikizceli I, Sözüer EM et al (2008) The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock. Ulus Travma Acil Cerrahi Derg 14:277–283
PubMed
Google Scholar
Ghiselli A, Serafini M, Natella F et al (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114
PubMed
Article
CAS
Google Scholar
Young IS (2001) Measurement of total antioxidant capacity. J Clin Pathol 54:339
Google Scholar
Costantini D, Verhulst S (2009) Does high antioxidant capacity indicate low oxidative stress? Funct Ecol 23:506–509
Article
Google Scholar
Gouliaev AH, Senning A (1994) Piracetam and other structurally related nootropics. Brain Res Rev 19:180–222
PubMed
Article
CAS
Google Scholar
Müller WE, Eckert GP, Eckert A (1999) Piracetam: novelty in a unique mode of action. Pharmacopsychiatry 32(Suppl 1):2–9
PubMed
Article
Google Scholar
Keil U, Scherping I, Hauptmann S et al (2006) Piracetam improves mitochondrial dysfunction following oxidative stress. Br J Pharmacol 147:199–208
PubMed
Article
CAS
Google Scholar
Kurz C, Ungerer I, Lipka U et al (2010) The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide. Br J Pharmacol 160:246–257
PubMed
Article
CAS
Google Scholar
Gabryel B, Adamek M, Pudełko A et al (2002) Piracetam and vinpocetine exert cytoprotective activity and prevent apoptosis of astrocytes in vitro in hypoxia and reoxygenation. Neurotoxicology 23:19–31
PubMed
Article
CAS
Google Scholar
Trejo F, Nekrassov V, Sitges M (2001) Characterization of vinpocetine effects on DA and DOPAC release in striatal isolated nerve endings. Brain Res 909:59–67
PubMed
Article
CAS
Google Scholar
Wustmann C, Blaschke M, Rudolph E et al (1990) Influence of nootropic drugs on the age-dependent potassium-coupling of transmitter release. Biomed Biochim Acta 49:619–624
PubMed
CAS
Google Scholar
Stancheva SL, Alova LG (1994) Biogenic monoamine uptake by rat brain synaptosomes during aging. Effects of nootropic drugs. Gen Pharmacol 25:981–987
PubMed
CAS
Google Scholar
Budygin EA, Gaĭnetdinov RR, Titov DA et al (1996) The effect of a low dose of piracetam on the activity of the dopaminergic system in the rat striatum. Eksp Klin Farmakol 59:6–8
PubMed
CAS
Google Scholar
Barzilai A, Melamed E, Shirvan A (2001) Is there a rationale for neuroprotection against dopamine toxicity in Parkinson’s disease? Cell Mol Neurobiol 21:215–235
PubMed
Article
CAS
Google Scholar
Gulyás B, Halldin C, Sandell J et al (2002) PET studies on the brain uptake and regional distribution of [11C]vinpocetine in human subjects. Acta Neurol Scand 106:325–332
PubMed
Article
Google Scholar
Grau M, Montero JL, Balasch J (1987) Effect of Piracetam on electrocorticogram and local cerebral glucose utilization in the rat. Gen Pharmacol 18:205–211
PubMed
CAS
Google Scholar
Piercey MF, Vogelsang GD, Franklin SR et al (1987) Reversal of scopolamine-induced amnesia and alterations in energy metabolism by the nootropic piracetam: implications regarding identification of brain structures involved in consolidation of memory traces. Brain Res 424:1–9
PubMed
Article
CAS
Google Scholar
Heiss WD, Hebold I, Klinkhammer P et al (1988) Effect of piracetam on cerebral glucose metabolism in Alzheimer’s disease as measured by positron emission tomography. J Cereb Blood Flow Metab 8:613–617
PubMed
Article
CAS
Google Scholar
Kaufer D, Friedman A, Seidman S et al (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377
PubMed
Article
CAS
Google Scholar
Tagliari B, Tagliari AP, Schmitz F et al (2011) Chronic variable stress alters inflammatory and cholinergic parameters in hippocampus of Rats. Neurochem Res 36:487–493
PubMed
Article
CAS
Google Scholar
Bond CE, Greenfield SA (2007) Multiple cascade effects of oxidative stress on astroglia. Glia 55:1348–1361
PubMed
Article
Google Scholar
Tarsy D (2006) Initial treatment of Parkinson’s disease. Curr Treat Options Neurol 8:224–235
PubMed
Article
Google Scholar