Integrating Experimental (In Vitro and In Vivo) Neurotoxicity Studies of Low-dose Thimerosal Relevant to Vaccines

Abstract

There is a need to interpret neurotoxic studies to help deal with uncertainties surrounding pregnant mothers, newborns and young children who must receive repeated doses of Thimerosal-containing vaccines (TCVs). This review integrates information derived from emerging experimental studies (in vitro and in vivo) of low-dose Thimerosal (sodium ethyl mercury thiosalicylate). Major databases (PubMed and Web-of-science) were searched for in vitro and in vivo experimental studies that addressed the effects of low-dose Thimerosal (or ethylmercury) on neural tissues and animal behaviour. Information extracted from studies indicates that: (a) activity of low doses of Thimerosal against isolated human and animal brain cells was found in all studies and is consistent with Hg neurotoxicity; (b) the neurotoxic effect of ethylmercury has not been studied with co-occurring adjuvant-Al in TCVs; (c) animal studies have shown that exposure to Thimerosal-Hg can lead to accumulation of inorganic Hg in brain, and that (d) doses relevant to TCV exposure possess the potential to affect human neuro-development. Thimerosal at concentrations relevant for infants’ exposure (in vaccines) is toxic to cultured human-brain cells and to laboratory animals. The persisting use of TCV (in developing countries) is counterintuitive to global efforts to lower Hg exposure and to ban Hg in medical products; its continued use in TCV requires evaluation of a sufficiently nontoxic level of ethylmercury compatible with repeated exposure (co-occurring with adjuvant-Al) during early life.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167–2178

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Palmer RF, Blanchard S, Stein Z et al (2006) Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place 12:203–209

    PubMed  Article  Google Scholar 

  3. 3.

    Ishitobi H, Stern S, Thurston SW (2010) Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor. Environ Health Perspect 118:242–248

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Warkany J, Hubbard DM (1953) Acrodynia and mercury. J Pediatr 42:365–386

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    HO W (2000) Thiomersal as a vaccine preservative. Weekly Epidemiol Record 75:12–16

    Google Scholar 

  6. 6.

    da Costa SL, Malm O, Dórea JG (2005) Breast-milk mercury concentrations and amalgam surface in mothers from Brasília, Brazil. Biol Trace Elem Res 106:145–151

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Seal D, Ficker L, Wright P et al (1991) The case against thiomersal. Lancet 338:315–316

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Karincaoglu Y, Aki T, Erguvan-Onal R et al (2007) Erythema multiforme due to diphtheria-pertussis-tetanus vaccine. Pediatr Dermatol 24:334–335

    PubMed  Article  Google Scholar 

  9. 9.

    Halsey NA, Goldman L (2001) Balancing risks and benefits: primum non nocere is too simplistic. Pediatrics 108:466–467

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Clements CJ (2004) The evidence for the safety of thiomersal in newborn and infant vaccines. Vaccine 22:1854–1861

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Lapphra K, Huh L, Scheifele DW (2010) Adverse neurologic reactions after both doses of pandemic H1N1 influenza vaccine with optic neuritis and demyelination. Pediatr Infect Dis J (in press)

  12. 12.

    Ratajczak HV (2011) Theoretical aspects of autism: causes? A review. J Immunotoxicol 8:68–79

    PubMed  Article  Google Scholar 

  13. 13.

    Dórea JG (2010) Research into mercury exposure and health education in subsistence fish-eating communities of the Amazon Basin: potential effects on public health policy. Int J Environ Res Public Health 7:3467–3477

    PubMed  Article  Google Scholar 

  14. 14.

    Knezevic I, Griffiths E, Reigel F (2004) Thiomersal in vaccines: a regulatory perspective WHO Consultation, Geneva, 15–16 April 2002. Vaccine 22:1836–1841

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Freed GL, Clark SJ, Butchart AT et al (2010) Parental vaccine safety concerns in 2009. Pediatrics 125:654–659

    PubMed  Article  Google Scholar 

  16. 16.

    Sears R (2010) The autism book: what every parent needs to know about early detection, treatment, recovery, and prevention. Little Brown

  17. 17.

    Austin DW, Shandley KA, Palombo EA (2010) Mercury in vaccines from the Australian childhood immunization program schedule. J Toxicol Environ Health A 73:637–640

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Siegrist CA (2010) Vaccine update 2009: questions around the safety of the influenza A (H1N1) vaccine. Rev Med Suisse 6:67–70

    PubMed  Google Scholar 

  19. 19.

    Stetler HC, Garbe PL, Dwyer DM et al (1985) Outbreaks of group A streptococcal abscesses following diphtheria-tetanus toxoid-pertussis vaccination. Pediatrics 75:299–303

    PubMed  CAS  Google Scholar 

  20. 20.

    Puziss M, Wright GG (1963) Studies on immunity in anthrax. X. Gel-adsorbed protective antigen for immunization of man. J Bacteriol 85:230–236

    PubMed  CAS  Google Scholar 

  21. 21.

    Nelson EA, Gottshall RY (1967) Enhanced toxicity for mice of pertussis vaccines when preserved with Merthiolate. Appl Microbiol 15:590–593

    PubMed  CAS  Google Scholar 

  22. 22.

    Geier DA, Jordan SK, Geier MR (2010) The relative toxicity of compounds used as preservatives in vaccines and biologics. Med Sci Monitor 16:SR21–SR27

    Google Scholar 

  23. 23.

    Mayrink W, Tavares CA, de Deus RB (2010) Comparative evaluation of phenol and thimerosal as preservatives for a candidate vaccine against American cutaneous leishmaniasis. Mem Inst Oswaldo Cruz 105:86–91

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Chanez C, Flexor MA, Bourre JM (1989) Effect of organic and inorganic mercuric salts on Na+K+ATPase in different cerebral fractions in control and intrauterine growth-retarded rats: alterations induced by serotonin. Neurotoxicology 10:699–706

    PubMed  CAS  Google Scholar 

  25. 25.

    Rush T, Hjelmhaug J, Lobner D (2009) Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture. Neurotoxicology 30:47–51

    Google Scholar 

  26. 26.

    Ueha-Ishibashi T, Oyama Y, Nakao H et al (2004) Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology 195:77–84

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    James SJ, Slikker W, Melnyk S et al (2005) Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 26:1–8

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Minami T, Miyata E, Sakamoto Y (2009) Expression of metallothionein mRNAs on mouse cerebellum microglia cells by thimerosal and its metabolites. Toxicology 261:25–32

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Baskin DS, Ngo H, Didenko VV (2003) Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol Sci 74:361–368

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Yel L, Brown LE, Su K et al (2005) Thimerosal induces neuronal cell apoptosis by causing cytochrome c and apoptosis-inducing factor release from mitochondria. Int J Mol Med 16:971–977

    PubMed  CAS  Google Scholar 

  31. 31.

    Humphrey ML, Cole MP, Pendergrass JC et al (2005) Mitochondrial mediated thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH). Neurotoxicology 26:407–416

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Herdman ML, Marcelo A, Huang Y et al (2006) Thimerosal induces apoptosis in a neuroblastoma model via the cJun N-terminal kinase pathway. Toxicol Sci 92:246–253

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Geier DA, King PG, Geier MR (2009) Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds. Toxicol Environ Chem 91:735–749

    Article  CAS  Google Scholar 

  34. 34.

    Parran DK, Barker A, Ehrich M (2005) Effects of thimerosal on NGF signal transduction and cell death in neuroblastoma cells. Toxicol Sci 86:132–140

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Waly M, Olteanu H, Banerjee R et al (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9:358–370

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    James SJ, Rose S, Melnyk S et al (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23:2374–2383

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Jin Y, Kim DK, Khil LY et al (2004) Thimerosal decreases TRPV1 activity by oxidation of extracellular sulfhydryl residues. Neurosci Lett 369:250–255

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Song J, Jang YY, Shin YK et al (2000) Inhibitory action of thimerosal, a sulfhydryl oxidant, on sodium channels in rat sensory neurons. Brain Res 864:105–113

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Lawton M, Iqbal M, Kontovraki M et al (2007) Reduced tubulin tyrosination as an early marker of mercury toxicity in differentiating N2a cells. Toxicol In Vitro 21:1258–1261

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Zieminska E, Toczylowska B, Stafiej A et al (2010) Low molecular weight thiols reduce thimerosal neurotoxicity in vitro: modulation by proteins. Toxicology 276:154–163

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Wyrembek P, Szczuraszek K, Majewska MD et al (2010) Intermingled modulatory and neurotoxic effects of thimerosal and mercuric ions on electrophysiological responses to GABA and NMDA in hippocampal neurons. J Physiol Pharmacol 61:753–768

    PubMed  CAS  Google Scholar 

  42. 42.

    Toimela T, Tahti H (2004) Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 78:565–574

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Campbell A, Hamai D, Bondy SC (2001) Differential toxicity of aluminum salts in human cell lines of neural origin: implications for neurodegeneration. Neurotoxicol 22:63–71

    Article  CAS  Google Scholar 

  44. 44.

    Redwood L, Bernard S, Brown D (2001) Predicted mercury concentrations in hair from infant immunizations: cause for concern. Neurotoxicology 22:691–697

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Aschner M, Ceccatelli S (2010) Are neuropathological conditions relevant to ethylmercury exposure? Neurotox Res 18:59–68

    PubMed  Article  Google Scholar 

  46. 46.

    Echeverria D, Woods JS, Heyer NJ et al (2010) The association between serotonin transporter gene promoter polymorphism (5-HTTLPR) and elemental mercury exposure on mood and behavior in humans. J Toxicol Environ Health 73:552–569

    Article  Google Scholar 

  47. 47.

    Ceccatelli S, Daré E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188:301–308

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Clarkson TW, Nordberg GF, Sager PR (1985) Reproductive and developmental toxicity of metals. Scand J Work Environ Health 11:145–154

    PubMed  CAS  Google Scholar 

  49. 49.

    Blair A, Clark B, Clarke A et al (1975) Tissue concentrations of mercury after chronic dosing of squirrel monkeys with thimerosal. Toxicology 3:171–176

    Article  CAS  Google Scholar 

  50. 50.

    Burbacher TM, Shen DD, Liberato N et al (2005) Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect 113:1015–1021

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Vahter M, Mottet NK, Friberg L et al (1994) Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 124:221–229

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Gassett AR, Itoi M, Ishii Y et al (1975) Teratogenicities of ophthalmic drugs II. Teratogenicities and tissue accumulation of thimerosal. Arch Ophthalmol 93:52–55

    Google Scholar 

  53. 53.

    Minami T, Oda K, Gima N et al (2007) Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice. Environ Toxicol Pharmacol 24:316–332

    Article  CAS  Google Scholar 

  54. 54.

    Minami T, Miyata E, Sakamoto Y et al (2010) Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection. Cell Biol Toxicol 26:143–152

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Orct T, Blanusa M, Lazarus M et al (2006) Comparison of organic and inorganic mercury distribution in suckling rat. J Appl Toxicol 26:536–539

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Zareba G, Cernichiari E, Hojo R et al (2007) Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J Appl Toxicol 27:511–518

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Rodrigues JL, Serpeloni JM, BL Batista et al (2010) Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch Toxicol 84:891–896

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Ekstrand J, Nielsen JB, Havarinasab S et al (2010) Mercury toxicokinetics-dependency on strain and gender. Toxicol Appl Pharmacol 243:283–291

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Branch DR (2009) Gender-selective toxicity of thimerosal. Exp Toxicol Pathol 61:133–136

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Harry GJ, Harris MW, Burka LT (2004) Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol Lett 154:183–189

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Gibičar D, Logar M, Horvat N et al (2007) Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent. Anal Bioanal Chem 388:329–340

    PubMed  Article  Google Scholar 

  62. 62.

    Dórea JG, Wimer W, Marques RC et al. (2010) Automated speciation of mercury in hair of breastfed infants exposed to ethylmercury from Thimerosal-containing vaccines. Biol Trace El Res (in press)

  63. 63.

    Mutter J, Curth A, Naumann J et al. (2010) Does inorganic mercury play a role in alzheimer’s disease? A systematic review and an integrated molecular mechanism. J Alzheimers Dis (in press)

  64. 64.

    Dórea JG, Marques RC (2010) Infants’ exposure to aluminum from vaccines and breast milk during the first 6 months. J Expo Sci Environ Epidemiol 20:598–601

    Google Scholar 

  65. 65.

    Burrell SA, Exley C (2010) There is (still) too much aluminium in infant formulas. BMC Pediatr 10:63

    PubMed  Article  Google Scholar 

  66. 66.

    Petrik MS, Wong MC, Tabata RC et al (2007) Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. Neuromolecular Med 9:83–100

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Flarend RE, Hem SL, White JL et al (1997) In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine 15:1314–1318

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Shaw CA, Petrick MS (2009) Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem 103:1555–1562

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Olczak M, Duszczyk M, Mierzejewski P et al (2010) Neonatal administration of thimerosal causes persistent changes in mu opioid receptors in the rat brain. Neurochem Res 35:1840–1847

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Olczak M, Duszczyk M, Mierzejewski P et al (2010) Lasting neuropathological changes in rat brain after intermittent neonatal administration of thimerosal. Folia Neuropathol 48:258–269

    PubMed  CAS  Google Scholar 

  71. 71.

    Hornig M, Chian D, Lipkin WI (2004) Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry 9:833–845

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Berman RF, Pessah IN, Mouton PR et al (2008) Low-level neonatal thimerosal exposure: further evaluation of altered neurotoxic potential in SJL mice. Toxicol Sci 101:294–309

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Olczak M, Duszczyk M, Mierzejewski P et al (2009) Neonatal administration of a vaccine preservative, thimerosal, produces lasting impairment of nociception and apparent activation of opioid system in rats. Brain Res 1301:143–151

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Hewitson L, Lopresti BJ, Stott C et al (2010) Influence of pediatric vaccines on amygdala growth and opioid ligand binding in rhesus macaque infants: a pilot study. Acta Neurobiol Exp 70:147–164

    Google Scholar 

  75. 75.

    Hewitson L, Houser LA, Stott C et al (2010) Delayed acquisition of neonatal reflexes in newborn primates receiving a thimerosal-containing hepatitis B vaccine: influence of gestational age and birth weight. J Toxicol Environ Health A 73:1298–1313

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Dórea JG (2010) Making sense of epidemiological studies of young children exposed to thimerosal in vaccines. Clin Chim Acta 411:1580–1586

    PubMed  Article  Google Scholar 

  77. 77.

    Marques RC, Dórea JG, Bernardi JV (2010) Thimerosal exposure (from tetanus-diphtheria vaccine) during pregnancy and neurodevelopment of breastfed infants at six months. Acta Paediatr 99:934–939

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Marques RC, Dórea JG, Bernardi JV et al (2009) Pre- and post-natal mercury exposure, breastfeeding and neurodevelopment during the first five years. Cognit Behav Neurol 22:134–141

    Article  Google Scholar 

  79. 79.

    Dórea JG, Marques RC, Brandão KG (2009) Neonate exposure to thimerosal mercury from hepatitis B vaccines. Am J Perinatol 26:523–527

    PubMed  Article  Google Scholar 

  80. 80.

    Judson RS, Houck KA, Kavlock RJ et al (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB (2010) Neuroligin-deficient, mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3:366–376

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Research Council of Brazil-CNPq (555516/2006-7).

Author information

Affiliations

Authors

Corresponding author

Correspondence to José G. Dórea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dórea, J.G. Integrating Experimental (In Vitro and In Vivo) Neurotoxicity Studies of Low-dose Thimerosal Relevant to Vaccines. Neurochem Res 36, 927–938 (2011). https://doi.org/10.1007/s11064-011-0427-0

Download citation

Keywords

  • Children
  • Infants
  • Neurodevelopment
  • Pregnancy
  • Ethylmercury
  • Thimerosal