Skip to main content

Advertisement

Log in

Effect of HFE Variants on Sphingolipid Expression by SH-SY5Y Human Neuroblastoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

C282Y and H63D are two common variants of the hemochromatosis protein HFE. SH-SY5Y human neuroblastoma cells stably transfected to express either wild type HFE (WT-HFE), or the C282Y or H63D allele were analyzed for effect of expression of the mutant proteins on transcription of 14 enzymes involved in sphingolipid metabolism. Cells expressing the C282Y variant showed significant increases (>2-fold) in transcription of five genes and decreases in two compared to that seen for cells expressing WT-HFE, while cells expressing the H63D variant showed an elevation in transcription of one gene and a decrease in two. These changes were seen as alterations in ganglioside composition, cell surface binding by the binding subunit of cholera toxin, expression of sphingosine-kinase-1 and synthesis of sphingosine-1-phosphate. These changes may explain why C282Y-HFE is a risk factor for colon and breast cancer and possibly protective against Alzheimer’s disease while H63D-HFE is a risk factor for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498

    Article  PubMed  CAS  Google Scholar 

  2. Combarros O, Garcia-Roman M, Fontalba A et al (2003) Interaction of the H63D mutation in the hemochromatosis gene with the apolipoprotein E epsilon 4 allele modulates age at onset of Alzheimer’s disease. Dement Geriatr Cogn Disord 15:151–154

    Article  PubMed  CAS  Google Scholar 

  3. Connor JR, Lee SY (2006) HFE mutations and Alzheimer’s disease. J Alzheimers Dis 10:267–276

    PubMed  Google Scholar 

  4. Osborne NJ, Gurrin LC, Allen KJ et al (2010) HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 51:1311–1318

    Article  PubMed  CAS  Google Scholar 

  5. Correia AP, Pinto JP, Dias V et al (2009) CAT53 and HFE alleles in Alzheimer’s disease: a putative protective role of the C282Y HFE mutation. Neurosci Lett 457:129–132

    Article  PubMed  CAS  Google Scholar 

  6. Waheed A, Parkkila S, Zhou XY et al (1997) Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc. Natl. Acad. Sci. USA 94:12384–12389

    Article  CAS  Google Scholar 

  7. Lawless MW, Mankan AK, White M et al (2007) Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses. BMC Cell Biol 8:30

    Article  PubMed  Google Scholar 

  8. Feder JN, Penny DM, Irrinki A et al (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 95:1472–1477

    Article  PubMed  CAS  Google Scholar 

  9. Calzolari A, Raggi C, Deaglio S et al (2006) TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 119:4486–4498

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Chloupkova M, Gao J et al (2007) HFE modulates transferrin receptor 2 levels in hepatoma cells via interations that differ from transferrin receptor 1-HFE interactions. J Biol Chem 282:36862–36870

    Article  PubMed  CAS  Google Scholar 

  11. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  12. Sakiyama H, Robbins PW (1973) Glycolipid synthesis and tumorigenicity of clones isolated from the Nil 2 line of hamster embryo fibroblasts. Fed Proc 32:86–90

    PubMed  CAS  Google Scholar 

  13. Brady RO, Fishman PH, Mora PT (1973) Membrane components and enzymes in virally transformed cells. Fed Proc 32:102–108

    PubMed  CAS  Google Scholar 

  14. Hakomori S (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 50:733–764

    Article  PubMed  CAS  Google Scholar 

  15. Petro KA, Schengrund C-L (2009) Membrane raft disruption promotes axonogenesis in N2a neuroblastoma cells. Neurochem Res 34:29–37

    Article  PubMed  CAS  Google Scholar 

  16. Ruckhaberle E, Karn T, Rody A et al (2009) Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135:1005–1013

    Article  PubMed  Google Scholar 

  17. Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361

    Article  PubMed  CAS  Google Scholar 

  18. Miyagi T, Wada T, Yamaguchi K et al (2008) Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J Biochem 144:279–285

    Article  PubMed  CAS  Google Scholar 

  19. Allende ML, Proia RL (2002) Lubricating cell signaling pathways with gangliosides. Curr Opin Struct Biol 12:587–592

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto N, Hirabayashi Y, Amari M et al (2005) Assembly of hereditary amyloid beta-protein variants in the presence of favorable gangliosides. FEBS Lett 579:2185–2190

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto N, Matsuzaki K, Yanagisawa K (2005) Cross-seeding of wild-type and hereditary variant-type amyloid beta-proteins in the presence of gangliosides. J Neurochem 95:1167–1176

    Article  PubMed  CAS  Google Scholar 

  22. Yanagisawa M, Ariga T, Yu RK (2010) Cytotoxic effects of G(M1) ganglioside and amyloid beta-peptide on mouse embryonic neural stem cells. ASN Neuro 2:e00029

    Article  PubMed  Google Scholar 

  23. Tamboli IY et al (2005) Inhibition of glycosphingolipid biosynthesis reduces secretion of the ß-amyloid precursor protein and amyloid ß-peptide. J Biol Chem 280:28110–28117

    Article  PubMed  CAS  Google Scholar 

  24. Cecchi C, Nichino D, Zampagni M et al (2009) A protective role for lipid raft cholesterol against amyloid-induced membrane damage in human neuroblastoma cells. Biochim Biophys Acta 1788:2204–2216

    Article  PubMed  CAS  Google Scholar 

  25. Wang XS, Lee S, Simmons Z et al (2004) Increased incidence of the HFE mutation in amyotropic lateral sclerosis and related cellular consequences. J Neural Sci 227:27–33

    Article  CAS  Google Scholar 

  26. Lee SY, Patton SM, Henderson RJ et al (2007) Consequences of expressing mutants of the hemochromatosis gene (HFE) into a human neuronal cell line lacking endogenous HFE. FASEB J 21:564–576

    Article  PubMed  CAS  Google Scholar 

  27. Petro KA, Dyer MA, Yowler BC et al (2006) Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A. Toxicon 48:1035–1045

    Article  PubMed  CAS  Google Scholar 

  28. Kasperzyk JL, d’Azzo A, Platt FM et al (2005) Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 46:744–751

    Article  PubMed  CAS  Google Scholar 

  29. Svennerholm L (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611

    Article  PubMed  CAS  Google Scholar 

  30. Suetake K, Yu RK (2003) Thin-layer chromatography; immunostaining of glycolipid antigens; and interpretation of false-positive findings with acidic lipids. Methods Enzymol 363:312–319

    Article  PubMed  CAS  Google Scholar 

  31. Hengst JA, Guilford JM, Conroy EJ et al (2010) Enhancement of sphingosine kinase 1 catalytic activity by deletion of 21 amino acids from the COOH-terminus. Arch Biochem Biophys 494:23–31

    Article  PubMed  CAS  Google Scholar 

  32. Hengst JA, Guilford JM, Fox TE et al (2009) Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition. Arch Biochem Biophys 492:62–73

    Article  PubMed  CAS  Google Scholar 

  33. Bickel PE, Scherer PE, Schnitzer JE et al (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272:13793–13802

    Article  PubMed  CAS  Google Scholar 

  34. Johnstone SR, Stallcup WB (1988) Altered expression of D1.1 ganglioside in the cerebellum of the Weaver mouse. J Neurochem 51:1655–1657

    Article  PubMed  CAS  Google Scholar 

  35. Purpura DP, Baker HJ (1978) Meganeurites and other aberrant processes of neurons in feline GM1-gangliosidosis: a Golgi study. Brain Res 116:1–21

    Article  Google Scholar 

  36. Yanagisawa M, Ariga T, Yu RK (2006) Cholera toxin B subunit binding does not correlate with GM1 expression: a study using mouse embryonic neural precursor cells. Glycobiology 16:19G–22G

    Article  PubMed  CAS  Google Scholar 

  37. Cuvillier O, Ader I, Bouquerel P et al (2010) Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol 3:53–65

    Article  PubMed  CAS  Google Scholar 

  38. Duchemin AM, Ren Q, Neff NH et al (2008) GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors. J Neurochem 104:1466–1477

    Article  PubMed  CAS  Google Scholar 

  39. Kwak DH, Yu K, Kim SM et al (2006) Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med 38:668–676

    PubMed  CAS  Google Scholar 

  40. Wu G, Xie X, Lu ZH et al (2009) Sodiium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci USA 106:10829–10834

    Article  PubMed  CAS  Google Scholar 

  41. Rosner H (1982) Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Brain Res 236:49–61

    Article  PubMed  CAS  Google Scholar 

  42. Kabayama K, Sato T, Saito K et al (2007) Dissociationof the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104:13678–13683

    Article  PubMed  CAS  Google Scholar 

  43. Van Brocklyn J, Bremer EG, Yates AJ (1993) Gangliosides inhibit platelet-derived growth factor-stimulated receptor dimerization in human glioma U-1242MG and Swiss 3T3 cells. J Neurochem 61:371–374

    Article  PubMed  Google Scholar 

  44. Mutoh T, Tokuda A, Miyadai T (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 92:5087–5091

    Article  PubMed  CAS  Google Scholar 

  45. Rusnati M, Urbinati C, Tanghetti E et al (2002) Cell membrane ganglioside GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci USA 99:4367–4372

    Article  PubMed  CAS  Google Scholar 

  46. Kuziemko GM, Stroh M, Stevens RC (1996) Cholera toxin binding affinity and specificity for gangliosides determined by surface Plasmon resonance. Biochemistry 35:6375–6384

    Article  PubMed  CAS  Google Scholar 

  47. Van Brocklyn JR, Jackson CA, Pearl DK et al (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64:695–705

    Article  PubMed  Google Scholar 

  48. Ruckhaberle E, Rody A, Engels K et al (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112:41–52

    Article  PubMed  Google Scholar 

  49. Brizuela L, Dayon A, Doumerc N et al (2010) The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J 24:3882–3894

    Article  PubMed  CAS  Google Scholar 

  50. Lee SY, Liu S, Mitchell RM et al (2010) HFE polymorphisms influence the response to chemotherapeutic agents via induction of p16INK4A. Int J Cancer. doi:10.1002/ijc.25888

  51. Chumanevich AA, Poudyal D, Cui X et al (2010) Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 31:1787–1793

    Article  PubMed  CAS  Google Scholar 

  52. Kapitonov D, Allegood JC, Mitchell C et al (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69:6915–6923

    Article  PubMed  CAS  Google Scholar 

  53. Madhankumar AB, Slagle-Webb B, Wang X et al (2009) Efficacy of IL-13 receptor targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 8:648–654

    Article  PubMed  CAS  Google Scholar 

  54. Svennerholm L (1980) Ganglioside designation. Adv Exp Med Biol 125:11

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jong Yun for helpful discussions, Dr. K.A. Petro for her help with isolating lipid rafts, and Dr. Sang Lee for providing us with the SH-SY5Y cells stably transfected to express either FLAG-tagged WT-, H63D- or C282Y-HFE alleles. We also thank the Jake Gittlen Cancer Research Foundation (JAH), and the George M. Leader Family Corporation (JRC) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-L. Schengrund.

Additional information

Special Issue: In Honor of Dr. Robert Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali-Rahmani, F., Hengst, J.A., Connor, J.R. et al. Effect of HFE Variants on Sphingolipid Expression by SH-SY5Y Human Neuroblastoma Cells. Neurochem Res 36, 1687–1696 (2011). https://doi.org/10.1007/s11064-011-0403-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0403-8

Keywords

Navigation