Skip to main content

Advertisement

Log in

Remodeling of Sphingolipids by Plasma Membrane Associated Enzymes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The sphingolipid plasma membrane content and pattern is the result of several processes, among which the main, in term of quantity, are: neo-biosynthesis in endoplasmic reticulum and Golgi apparatus, membrane turnover with final catabolism in lysosomes and membrane shedding. In addition to this, past and recent data suggest that the head group of sphingolipids can be opportunely modified at the plasma membrane level, probably inside specific membrane lipid domains, by the action of enzymes involved in the sphingolipids metabolism, working directly at the cell surface. The number of membrane enzymes, hydrolases and transferases, acting on membrane sphingolipids is growing very rapidly. In this report we describe some properties of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pascher I, Lundmark M, Nyholm PG et al (1992) Crystal structures of membrane lipids. Biochim Biophys Acta 1113:339–373

    PubMed  CAS  Google Scholar 

  2. Sonnino S, Prinetti A, Mauri L et al (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    Article  PubMed  CAS  Google Scholar 

  3. Prinetti A, Chigorno V, Tettamanti G et al (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    Article  PubMed  CAS  Google Scholar 

  4. Prinetti A, Loberto N, Chigorno V et al (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193

    Article  PubMed  CAS  Google Scholar 

  5. Kabayama K, Sato T, Saito K et al (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104:13678–13683

    Article  PubMed  CAS  Google Scholar 

  6. Sonnino S, Prinetti A, Nakayama H et al (2009) Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J 26:615–621

    Article  PubMed  CAS  Google Scholar 

  7. Svennerholm L (1976) Interaction of cholera toxin and ganglioside G(M1). Adv Exp Med Biol 71:191–204

    PubMed  CAS  Google Scholar 

  8. Lingwood CA (1999) Glycolipid receptors for verotoxin and Helicobacter pylori: role in pathology. Biochim Biophys Acta 1455:375–386

    PubMed  CAS  Google Scholar 

  9. Kojima N, Hakomori S (1991) Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J Biol Chem 266:17552–17558

    PubMed  CAS  Google Scholar 

  10. Schnaar RL, Lopez PH (2009) Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 87:3267–3276

    Article  PubMed  CAS  Google Scholar 

  11. Bremer EG, Hakomori S, Bowen-Pope DF et al (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259:6818–6825

    PubMed  CAS  Google Scholar 

  12. Kasahara K, Watanabe K, Kozutsumi Y et al (2002) Association of GPI-anchored protein TAG-1 with src-family kinase Lyn in lipid rafts of cerebellar granule cells. Neurochem Res 27:823–829

    Article  PubMed  CAS  Google Scholar 

  13. Nakayama H, Yoshizaki F, Prinetti A et al (2008) Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J Leukoc Biol 83:728–741

    Article  PubMed  CAS  Google Scholar 

  14. Iwabuchi K, Prinetti A, Sonnino S et al (2008) Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 25:357–374

    Article  PubMed  CAS  Google Scholar 

  15. Miyagi T, Sagawa J, Konno K et al (1990) Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the particulate fraction of rat brain. J Biochem (Tokyo) 107:787–793

    CAS  Google Scholar 

  16. Miyagi T, Sagawa J, Konno K et al (1990) Immunological discrimination of intralysosomal, cytosolic, and two membrane sialidases present in rat tissues. J Biochem (Tokyo) 107:794–798

    CAS  Google Scholar 

  17. Schneider-Jakob HR, Cantz M (1991) Lysosomal and plasma membrane ganglioside GM3 sialidases of cultured human fibroblasts. Differentiation by detergents and inhibitors. Biol Chem Hoppe Seyler 372:443–450

    Article  PubMed  CAS  Google Scholar 

  18. Kopitz J, von Reitzenstein C, Muhl C et al (1994) Role of plasma membrane ganglioside sialidase of human neuroblastoma cells in growth control and differentiation. Biochem Biophys Res Commun 199:1188–1193

    Article  PubMed  CAS  Google Scholar 

  19. Kopitz J, Muhl C, Ehemann V et al (1997) Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol 73:1–9

    Article  PubMed  CAS  Google Scholar 

  20. Kopitz J, Sinz K, Brossmer R et al (1997) Partial characterization and enrichment of a membrane-bound sialidase specific for gangliosides from human brain tissue. Eur J Biochem 248:527–534

    Article  PubMed  CAS  Google Scholar 

  21. Chigorno V, Cardace G, Pitto M et al (1986) A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts. Anal Biochem 153:283–294

    Article  PubMed  CAS  Google Scholar 

  22. Riboni L, Prinetti A, Bassi R et al (1991) Cerebellar granule cells in culture exhibit a ganglioside-sialidase presumably linked to the plasma membrane. FEBS Lett 287:42–46

    Article  PubMed  CAS  Google Scholar 

  23. Wada T, Yoshikawa Y, Tokuyama S et al (1999) Cloning, expression, and chromosomal mapping of a human ganglioside sialidase. Biochem Biophys Res Commun 261:21–27

    Article  PubMed  CAS  Google Scholar 

  24. Miyagi T, Wada T, Iwamatsu A et al (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274:5004–5011

    Article  PubMed  CAS  Google Scholar 

  25. Hasegawa T, Yamaguchi K, Wada T et al (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275:14778

    PubMed  CAS  Google Scholar 

  26. Monti E, Preti A, Venerando B et al (2002) Recent development in mammalian sialidase molecular biology. Neurochem Res 27:649–663

    Article  PubMed  CAS  Google Scholar 

  27. Miyagi T, Wada T, Yamaguchi K et al (2008) Human sialidase as a cancer marker. Proteomics 8:3303–3311

    Article  PubMed  CAS  Google Scholar 

  28. Miyagi T, Wada T, Yamaguchi K (2008) Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 1780:532–537

    PubMed  CAS  Google Scholar 

  29. Ueno S, Saito S, Wada T et al (2006) Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem 281:7756–7764

    Article  PubMed  CAS  Google Scholar 

  30. Kakugawa Y, Wada T, Yamaguchi K et al (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A 99:10718–10723

    Article  PubMed  CAS  Google Scholar 

  31. Venerando B, Fiorilli A, Croci G et al (2002) Acidic and neutral sialidase in the erythrocyte membrane of type 2 diabetic patients. Blood 99:1064–1070

    Article  PubMed  CAS  Google Scholar 

  32. Tringali C, Lupo B, Anastasia L et al (2007) Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J Biol Chem 282:14364–14372

    Article  PubMed  CAS  Google Scholar 

  33. Tringali C, Anastasia L, Papini N et al (2007) Modification of sialidase levels and sialoglycoconjugate pattern during erythroid and erytroleukemic cell differentiation. Glycoconj J 24:67–79

    Article  PubMed  CAS  Google Scholar 

  34. Schengrund CL, Repman MA (1982) Density-dependent changes in gangliosides and sialidase activity of murine neuroblastoma cells. J Neurochem 39:940–947

    Article  PubMed  CAS  Google Scholar 

  35. Valaperta R, Valsecchi M, Rocchetta F et al (2007) Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J Neurochem 100:708–719

    Article  PubMed  CAS  Google Scholar 

  36. Valaperta R, Chigorno V, Basso L et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. Faseb J 20:1227–1229

    Article  PubMed  CAS  Google Scholar 

  37. Proshin S, Yamaguchi K, Wada T et al (2002) Modulation of neuritogenesis by ganglioside-specific sialidase (Neu 3) in human neuroblastoma NB-1 cells. Neurochem Res 27:841–846

    Article  PubMed  CAS  Google Scholar 

  38. von Reitzenstein C, Kopitz J, Schuhmann V et al (2001) Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. Eur J Biochem 268:326–333

    Article  Google Scholar 

  39. Aureli M, Loberto N, Lanteri P et al (2010) Cell surface sphingolipid glycohydrolases in neuronal differentation and aging in culture. J Neurochem. doi:10.1111/j.1471-4159.2010.07019.x

  40. Rodriguez JA, Piddini E, Hasegawa T et al (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395

    PubMed  CAS  Google Scholar 

  41. Da Silva JS, Hasegawa T, Miyagi T et al (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–615

    Article  PubMed  CAS  Google Scholar 

  42. Kalka D, von Reitzenstein C, Kopitz J et al (2001) The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun 283:989–993

    Article  PubMed  CAS  Google Scholar 

  43. Papini N, Anastasia L, Tringali C et al (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279:16989–16995

    Article  PubMed  CAS  Google Scholar 

  44. Ueda K, Kim KM, Beppu T et al (1995) Overexpression of a gene cluster encoding a chalcone synthase-like protein confers redbrown pigment production in Streptomyces griseus. J Antibiot (Tokyo) 48:638–646

    CAS  Google Scholar 

  45. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  Google Scholar 

  46. Schengrund CL, Rosenberg A (1970) Intracellular location and properties of bovine brain sialidase. J Biol Chem 245:6196–6200

    PubMed  CAS  Google Scholar 

  47. Tettamanti G, Bonali F, Marchesini S et al (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296(291):160–270

    PubMed  CAS  Google Scholar 

  48. Tettamanti G, Cestaro B, Lombardo A et al (1974) Studies on brain membrane-bound neuraminidase. II. Effect of detergents on the kinetics of the enzyme prepared from calf brain. Biochim Biophys Acta 350:415–424

    PubMed  CAS  Google Scholar 

  49. Tettamanti G, Morgan IG, Gombos G et al (1972) Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res 47:515–518

    Article  PubMed  CAS  Google Scholar 

  50. Preti A, Fiorilli A, Lombardo A et al (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35:281–296

    Article  PubMed  CAS  Google Scholar 

  51. Matsui Y, Lombard D, Massarelli R et al (1986) Surface glycosyltransferase activities during development of neuronal cell cultures. J Neurochem 46:144–150

    Article  PubMed  CAS  Google Scholar 

  52. Durrie R, Rosenberg A (1989) Anabolic sialosylation of gangliosides in situ in rat brain cortical slices. J Lipid Res 30:1259–1266

    PubMed  CAS  Google Scholar 

  53. Durrie R, Saito M, Rosenberg A (1988) Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact Golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain. Biochemistry 27:3759–3764

    Article  PubMed  CAS  Google Scholar 

  54. Iwamori M, Iwamori Y (2005) Changes in the glycolipid composition and characteristic activation of GM3 synthase in the thymus of mouse after administration of dexamethasone. Glycoconj J 22:119–126

    Article  PubMed  CAS  Google Scholar 

  55. Crespo PM, Demichelis VT, Daniotti JL (2010) Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases. J Biol Chem 285:29179–29190

    Article  PubMed  CAS  Google Scholar 

  56. Uemura S, Yoshida S, Shishido F et al (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20:3088–3100

    Article  PubMed  CAS  Google Scholar 

  57. Mencarelli S, Cavalieri C, Magini A et al (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506

    Article  PubMed  CAS  Google Scholar 

  58. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2 +)-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  PubMed  CAS  Google Scholar 

  59. Coates PJ (2002) Markers of senescence? J Pathol 196:371–373

    Article  PubMed  Google Scholar 

  60. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  61. Severino J, Allen RG, Balin S et al (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    Article  PubMed  CAS  Google Scholar 

  62. Geng YQ, Guan JT, Xu XH et al (2010) Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun 396:866–869

    Article  PubMed  CAS  Google Scholar 

  63. Aureli M, Masilamani AP, Illuzzi G et al (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    Article  PubMed  CAS  Google Scholar 

  64. Evans MK, Robbins JH, Ganges MB et al (1993) Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. J Biol Chem 268:4839–4847

    PubMed  CAS  Google Scholar 

  65. Huang Q, Shur BD, Begovac PC (1995) Overexpressing cell surface beta 1.4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin. J Cell Sci 108(Pt 2):839–847

    PubMed  CAS  Google Scholar 

  66. Martina JA, Daniotti JL, Maccioni HJ (2000) GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochem Res 25:725–731

    Article  PubMed  CAS  Google Scholar 

  67. Neufeld EF (1991) Lysosomal storage diseases. Annu Rev Biochem 60:257–280

    Article  PubMed  CAS  Google Scholar 

  68. Daniels LB, Coyle PJ, Chiao YB et al (1981) Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem 256:13004–13013

    PubMed  CAS  Google Scholar 

  69. Boot RG, Verhoek M, Donker-Koopman W et al (2007) Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 282:1305–1312

    Article  PubMed  CAS  Google Scholar 

  70. Overkleeft HS, Renkema GH, Neele J et al (1998) Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 273:26522–26527

    Article  PubMed  CAS  Google Scholar 

  71. Milhas D, Clarke CJ, Hannun YA (2010) Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 584:1887–1894

    Article  PubMed  CAS  Google Scholar 

  72. Corcoran CA, He Q, Ponnusamy S et al (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6:795–807

    Article  PubMed  CAS  Google Scholar 

  73. Krut O, Wiegmann K, Kashkar H et al (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281:13784–13793

    Article  PubMed  CAS  Google Scholar 

  74. Stoffel W, Jenke B, Block B et al (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A 102:4554–4559

    Article  PubMed  CAS  Google Scholar 

  75. Kim WJ, Okimoto RA, Purton LE et al (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111:4716–4722

    Article  PubMed  CAS  Google Scholar 

  76. Karakashian AA, Giltiay NV, Smith GM et al (2004) Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. FASEB J 18:968–970

    PubMed  CAS  Google Scholar 

  77. Marchesini N, Hannun YA (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 82:27–44

    Article  PubMed  CAS  Google Scholar 

  78. Tani M, Hannun YA (2007) Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J Biol Chem 282:10047–10056

    Article  PubMed  CAS  Google Scholar 

  79. Clarke CJ, Truong TG, Hannun YA (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem 282:1384–1396

    Article  PubMed  CAS  Google Scholar 

  80. Huitema K, van den Dikkenberg J, Brouwers JF et al (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44

    Article  PubMed  CAS  Google Scholar 

  81. Tafesse FG, Huitema K, Hermansson M et al (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J Biol Chem 282:17537–17547

    Article  PubMed  CAS  Google Scholar 

  82. Li Z, Hailemariam TK, Zhou H et al (2007) Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim Biophys Acta 1771:1186–1194

    PubMed  CAS  Google Scholar 

  83. Tani M, Kuge O (2009) Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem Biophys Res Commun 381:328–332

    Article  PubMed  CAS  Google Scholar 

  84. Yada Y, Higuchi K, Imokawa G (1995) Purification and biochemical characterization of membrane-bound epidermal ceramidases from guinea pig skin. J Biol Chem 270:12677–12684

    PubMed  CAS  Google Scholar 

  85. Gatt S (1963) Enzymic Hydrolysis and Synthesis of Ceramides. J Biol Chem 238:3131–3133

    PubMed  CAS  Google Scholar 

  86. Slife CW, Wang E, Hunter R et al (1989) Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum. J Biol Chem 264:10371–10377

    PubMed  CAS  Google Scholar 

  87. Tani M, Ito M, Igarashi Y (2007) Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19:229–237

    Article  PubMed  CAS  Google Scholar 

  88. Tani M, Iida H, Ito M (2003) O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem 278:10523–10530

    Article  PubMed  CAS  Google Scholar 

  89. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  90. Prinetti A, Aureli M, Illuzzi G et al (2009) GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20:62–77

    Article  PubMed  Google Scholar 

  91. Radin NS, Shayman JA, Inokuchi J (1993) Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv Lipid Res 26:183–213

    PubMed  CAS  Google Scholar 

  92. Huseby M, Shi K, Brown CK et al (2007) Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol 189:8719–8726

    Article  PubMed  CAS  Google Scholar 

  93. Berenson CS, Gallery MA, Smigiera JM et al (2002) The role of ceramide of human macrophage gangliosides in activation of human macrophages. J Leukoc Biol 72:492–502

    PubMed  CAS  Google Scholar 

  94. Zhang Y, Li X, Becker KA et al (2009) Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta 1788:178–183

    Article  PubMed  CAS  Google Scholar 

  95. Holopainen JM, Angelova MI, Kinnunen PK (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione CARIPLO and PRIN to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Additional information

Special Issue: In Honor of Dr. Robert Yu.

Abbreviations: Ganglioside and glycosphingolipid nomenclature is in accordance with Svennerholm (Svennerholm 1980), and the IUPAC-IUBMB recommendations (1997).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aureli, M., Loberto, N., Chigorno, V. et al. Remodeling of Sphingolipids by Plasma Membrane Associated Enzymes. Neurochem Res 36, 1636–1644 (2011). https://doi.org/10.1007/s11064-010-0360-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0360-7

Keywords

Navigation