Skip to main content
Log in

There is More to a Lipid than just Being a Fat: Sphingolipid-Guided Differentiation of Oligodendroglial Lineage from Embryonic Stem Cells

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dr. Robert K. Yu’s research showed for the first time that the composition of glycosphingolipids is tightly regulated during embryo development. Studies in our group showed that the glycosphingolipid precursor ceramide is also critical for stem cell differentiation and apoptosis. Our new studies suggest that ceramide and its derivative, sphingosine-1-phosphate (S1P), act synergistically on embryonic stem (ES) cell differentiation. When using neural precursor cells (NPCs) derived from ES cells for transplantation, residual pluripotent stem (rPS) cells pose a significant risk of tumor formation after stem cell transplantation. We show here that rPS cells did not express the S1P receptor S1P1, which left them vulnerable to ceramide or ceramide analog (N-oleoyl serinol or S18)-induced apoptosis. In contrast, ES cell-derived NPCs expressed S1P1 and were protected in the presence of S1P or its pro-drug analog FTY720. Consistent with previous studies, FTY720-treated NPCs differentiated predominantly toward oligodendroglial lineage as tested by the expression of the oligodendrocyte precursor cell (OPC) markers Olig2 and O4. As the consequence, a combined administration of S18 and FTY720 to differentiating ES cells eliminated rPS cells and promoted oligodendroglial differentiation. In addition, we show that this combination promoted differentiation of ES cell-derived NPCs toward oligodendroglial lineage in vivo after transplantation into mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aPKC:

Atypical PKC

EB:

Embryoid body

EBC:

EB-derived cell

ES:

Embryonic stem

iOPC:

Induced oligodendrocyte precursor cell

MBP:

Myelin basic protein

NP:

Neural progenitor

NPC:

Neural precursor cell

OPC:

Oligodendrocyte precursor cell

PAR-4:

Prostate apoptosis response 4

rPS:

Residual pluripotent stem

S1P:

Sphingosine-1-phoshate

S18:

N-oleoyl serinol

References

  1. Strathmann FG, Wang X, Mayer-Proschel M (2007) Identification of two novel glial-restricted cell populations in the embryonic telencephalon arising from unique origins. BMC Dev Biol 7:33

    Article  PubMed  CAS  Google Scholar 

  2. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99:2344–2349

    Article  PubMed  CAS  Google Scholar 

  3. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734

    Article  PubMed  CAS  Google Scholar 

  4. Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    Article  PubMed  CAS  Google Scholar 

  5. Duncan ID (2005) Oligodendrocytes and stem cell transplantation: their potential in the treatment of leukoencephalopathies. J Inherit Metab Dis 28:357–368

    Article  PubMed  CAS  Google Scholar 

  6. Perez-Bouza A, Glaser T, Brustle O (2005) ES cell-derived glial precursors contribute to remyelination in acutely demyelinated spinal cord lesions. Brain Pathol 15:208–216

    Article  PubMed  Google Scholar 

  7. Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4:1614–1622

    Article  PubMed  CAS  Google Scholar 

  8. Kiel ME, Chen CP, Sadowski D, McKinnon RD (2008) Stem cell-derived therapeutic myelin repair requires 7% cell replacement. Stem Cells 26:2229–2236

    Article  PubMed  CAS  Google Scholar 

  9. Maire CL, Buchet D, Kerninon C, Deboux C, Baron-Van Evercooren A, Nait-Oumesmar B (2009) Directing human neural stem/precursor cells into oligodendrocytes by overexpression of Olig2 transcription factor. J Neurosci Res 87:3438–3446

    Article  PubMed  CAS  Google Scholar 

  10. Goldman JE, Hirano M, Yu RK, Seyfried TN (1984) GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J Neuroimmunol 7:179–192

    Article  PubMed  CAS  Google Scholar 

  11. Yu RK (1994) Development regulation of ganglioside metabolism. Prog Brain Res 101:31–44

    Article  PubMed  CAS  Google Scholar 

  12. Suetake K, Liour SS, Tencomnao T, Yu RK (2003) Expression of gangliosides in an immortalized neural progenitor/stem cell line. J Neurosci Res 74:769–776

    Article  PubMed  CAS  Google Scholar 

  13. Cochran FB, Ledeen RW, Yu RK (1982) Gangliosides and proteins in developing chicken brain myelin. Brain Res 282:27–32

    PubMed  CAS  Google Scholar 

  14. Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    Article  PubMed  CAS  Google Scholar 

  15. Yu RK, Macala LJ, Farooq M, Sbaschnig-Agler M, Norton WT, Ledeen RW (1989) Ganglioside and lipid composition of bulk-isolated rat and bovine oligodendroglia. J Neurosci Res 23:136–141

    Article  PubMed  CAS  Google Scholar 

  16. Zeng G, Gao L, Freischutz B, Tokuda A, Yu RK (1998) Developmental expression of rat brain GD3-and GT3-synthases. Ann N Y Acad Sci 845:430

    Article  PubMed  CAS  Google Scholar 

  17. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    Article  PubMed  CAS  Google Scholar 

  18. Liour SS, Yu RK (2002) Differential effects of three inhibitors of glycosphingolipid biosynthesis on neuronal differentiation of embryonal carcinoma stem cells. Neurochem Res 27:1507–1512

    Article  PubMed  CAS  Google Scholar 

  19. Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20:78–86

    Article  PubMed  CAS  Google Scholar 

  20. Liour SS, Kapitonov D, Yu RK (2000) Expression of gangliosides in neuronal development of P19 embryonal carcinoma stem cells. J Neurosci Res 62:363–373

    Article  PubMed  CAS  Google Scholar 

  21. Liour SS, Kraemer SA, Dinkins MB, Su CY, Yanagisawa M, Yu RK (2006) Further characterization of embryonic stem cell-derived radial glial cells. Glia 53:43–56

    Article  PubMed  Google Scholar 

  22. Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280:26415–26424

    Article  PubMed  CAS  Google Scholar 

  23. Bieberich E, Freischutz B, Suzuki M, Yu RK (1999) Differential effects of glycolipid biosynthesis inhibitors on ceramide-induced cell death in neuroblastoma cells. J Neurochem 72:1040–1049

    Article  PubMed  CAS  Google Scholar 

  24. Bieberich E, Kawaguchi T, Yu RK (2000) N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275:177–181

    Article  PubMed  CAS  Google Scholar 

  25. Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276:44396–44404

    Article  PubMed  CAS  Google Scholar 

  26. Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162:469–479

    Article  PubMed  CAS  Google Scholar 

  27. Bieberich E (2004) Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21:315–327

    Article  PubMed  CAS  Google Scholar 

  28. Krishnamurthy K, Wang G, Silva J, Condie BG, Bieberich E (2007) Ceramide regulates atypical PKC{zeta}/{lambda}-mediated cell polarity in primitive ectoderm cells: a novel function of sphingolipids in morphogenesis. J Biol Chem 282:3379–3390

    Article  PubMed  CAS  Google Scholar 

  29. Krishnamurthy K, Dasgupta S, Bieberich E (2007) Development and characterization of a novel anti-ceramide antibody. J Lipid Res 48:968–975

    Article  PubMed  CAS  Google Scholar 

  30. Bieberich E (2008) Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide. Neurosignals 16:124–139

    Article  PubMed  CAS  Google Scholar 

  31. Bieberich E (2008) Ceramide signaling in cancer and stem cells. Future Lipidol 3:273–300

    Article  PubMed  CAS  Google Scholar 

  32. Wang G, Krishnamurthy K, Chiang YW, Dasgupta S, Bieberich E (2008) Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development. J Neurochem 106:718–733

    Article  PubMed  CAS  Google Scholar 

  33. Wang G, Silva J, Dasgupta S, Bieberich E (2008) Long-chain ceramide is elevated in presenilin 1 (PS1M146 V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56:449–456

    Article  PubMed  Google Scholar 

  34. Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E (2009) The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 284:14469–14475

    Article  PubMed  CAS  Google Scholar 

  35. Yanai J, Doetchman T, Laufer N, Maslaton J, Mor-Yosef S, Safran A, Shani M, Sofer D (1995) Embryonic cultures but not embryos transplanted to the mouse’s brain grow rapidly without immunosuppression. Int J Neurosci 81:21–26

    Article  PubMed  CAS  Google Scholar 

  36. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42:162–165

    Article  CAS  Google Scholar 

  37. Teramoto K, Hara Y, Kumashiro Y, Chinzei R, Tanaka Y, Shimizu-Saito K, Asahina K, Teraoka H, Arii S (2005) Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37:285–286

    Article  PubMed  CAS  Google Scholar 

  38. Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–I172

    PubMed  Google Scholar 

  39. Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, Isacson O (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23:914–922

    Article  PubMed  Google Scholar 

  40. Kim D, Gu Y, Ishii M, Fujimiya M, Qi M, Nakamura N, Yoshikawa T, Sumi S, Inoue K (2003) In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27:e34–e41

    Article  PubMed  Google Scholar 

  41. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791

    Article  PubMed  CAS  Google Scholar 

  42. Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85:1851–1862

    Article  PubMed  CAS  Google Scholar 

  43. Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, Lee JD, Yeoh GC, Shin HS, Lee JS, Oh B (2002) In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant 11:359–368

    PubMed  Google Scholar 

  44. Bielby RC, Boccaccini AR, Polak JM, Buttery LD (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10:1518–1525

    PubMed  CAS  Google Scholar 

  45. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255

    Article  PubMed  Google Scholar 

  46. Baker M (2009) Stem cells: fast and furious. Nature 458:962–965

    Article  PubMed  CAS  Google Scholar 

  47. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93:1278–1284

    Article  PubMed  Google Scholar 

  48. Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    Article  PubMed  Google Scholar 

  49. Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608–2612

    Article  PubMed  CAS  Google Scholar 

  50. Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111:769–781

    Article  PubMed  CAS  Google Scholar 

  51. Kuznetsov SA, Cherman N, Robey PG (2010) In vivo bone formation by progeny of human embryonic stem cells. Stem Cells Dev. doi:10.1089/scd.2009.0501

  52. Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911–919

    Article  PubMed  Google Scholar 

  53. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96

    Article  PubMed  CAS  Google Scholar 

  54. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  55. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758:2016–2026

    Article  PubMed  CAS  Google Scholar 

  56. Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782

    Article  PubMed  CAS  Google Scholar 

  57. Merrill AH Jr, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E (1997) Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142:208–225

    Article  PubMed  CAS  Google Scholar 

  58. Edsall LC, Pirianov GG, Spiegel S (1997) Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 17:6952–6960

    PubMed  CAS  Google Scholar 

  59. Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6:489–497

    Article  PubMed  CAS  Google Scholar 

  60. Bieberich E, Hu B, Silva J, MacKinnon S, Yu RK, Fillmore H, Broaddus WC, Ottenbrite RM (2002) Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett 181:55–64

    Article  PubMed  CAS  Google Scholar 

  61. Osinde M, Mullershausen F, Dev KK (2007) Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology 52:1210–1218

    Article  PubMed  CAS  Google Scholar 

  62. Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C (2007) The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther 323:626–635

    Article  PubMed  CAS  Google Scholar 

  63. Saini HS, Coelho RP, Goparaju SK, Jolly PS, Maceyka M, Spiegel S, Sato-Bigbee C (2005) Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors. J Neurochem 95:1298–1310

    Article  PubMed  CAS  Google Scholar 

  64. Hojjati MR, Li Z, Jiang XC (2005) Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 1737:44–51

    PubMed  CAS  Google Scholar 

  65. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed  CAS  Google Scholar 

  66. Zhou H, Summers SA, Birnbaum MJ, Pittman RN (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 273:16568–16575

    Article  PubMed  CAS  Google Scholar 

  67. Jung CG, Kim HJ, Miron VE, Cook S, Kennedy TE, Foster CA, Antel JP, Soliven B (2007) Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia 55:1656–1667

    Article  PubMed  CAS  Google Scholar 

  68. Hsieh HL, Wu CB, Sun CC, Liao CH, Lau YT, Yang CM (2006) Sphingosine-1-phosphate induces COX-2 expression via PI3 K/Akt and p42/p44 MAPK pathways in rat vascular smooth muscle cells. J Cell Physiol 207:757–766

    Article  PubMed  CAS  Google Scholar 

  69. Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A (2007) Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 16:989–1001

    Article  PubMed  CAS  Google Scholar 

  70. Arboleda G, Morales LC, Benitez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59:333–346

    Article  PubMed  CAS  Google Scholar 

  71. Bourbon NA, Sandirasegarane L, Kester M (2002) Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem 277:3286–3292

    Article  PubMed  CAS  Google Scholar 

  72. Stoica BA, Movsesyan VA, Lea PM 4th, Faden AI (2003) Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci 22:365–382

    Article  PubMed  CAS  Google Scholar 

  73. Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA (2005) Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 280:27879–27887

    Article  PubMed  CAS  Google Scholar 

  74. Fernandez-Marcos PJ, Abu-Baker S, Joshi J, Galvez A, Castilla EA, Canamero M, Collado M, Saez C, Moreno-Bueno G, Palacios J, Leitges M, Serrano M, Moscat J and Diaz-Meco MT (2009) Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-{kappa}B activation and invasive prostate carcinoma. Proc Natl Acad Sci USA

  75. Lee TJ, Lee JT, Kim SH, Choi YH, Song KS, Park JW, Kwon TK (2008) Overexpression of Par-4 enhances thapsigargin-induced apoptosis via down-regulation of XIAP and inactivation of Akt in human renal cancer cells. J Cell Biochem 103:358–368

    Article  PubMed  CAS  Google Scholar 

  76. Diaz-Meco MT, Abu-Baker S (2009) The Par-4/PTEN connection in tumor suppression. Cell Cycle 8:2518–2522

    Article  PubMed  CAS  Google Scholar 

  77. Lee TJ, Jang JH, Noh HJ, Park EJ, Choi KS, Kwon TK (2010) Overexpression of Par-4 sensitizes TRAIL-induced apoptosis via inactivation of NF-kappaB and Akt signaling pathways in renal cancer cells. J Cell Biochem 109:885–895

    PubMed  CAS  Google Scholar 

  78. Sun B, Lu C, Zhou GP, Xing CY (2010) Suppression of Par-4 protects human renal proximal tubule cells from apoptosis induced by oxidative stress. Nephron Exp Nephrol 117:e53–e61

    Article  CAS  Google Scholar 

  79. Goswami A, Ranganathan P, Rangnekar VM (2006) The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res 66:2889–2892

    Article  PubMed  CAS  Google Scholar 

  80. Hancock CR, Wetherington JP, Lambert NA, Condie BG (2000) Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem Biophys Res Commun 271:418–421

    Article  PubMed  CAS  Google Scholar 

  81. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  PubMed  CAS  Google Scholar 

  82. Ruhparwar A, Bara C, Kofidis T, Ruebesamen N, Karck M, Martin U, Haverich A (2006) In vivo detection of integration of grafted cells after myocardial transplantation. Zentralbl Chir 131:420–424

    Article  PubMed  CAS  Google Scholar 

  83. Ruhparwar A, Kofidis T, Ruebesamen N, Karck M, Haverich A, Martin U (2005) Intra-vital fluorescence microscopy for intra-myocardial graft detection following cell transplantation. Int J Cardiovasc Imaging 21:569–574

    Article  PubMed  Google Scholar 

  84. Xian HQ, McNichols E, St Clair A, Gottlieb DI (2003) A subset of ES-cell-derived neural cells marked by gene targeting. Stem Cells 21:41–49

    Article  PubMed  CAS  Google Scholar 

  85. Xian H, Gottlieb DI (2004) Dividing Olig2-expressing progenitor cells derived from ES cells. Glia 47:88–101

    Article  PubMed  Google Scholar 

  86. Paugh SW, Payne SG, Barbour SE, Milstien S, Spiegel S (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 554:189–193

    Article  PubMed  CAS  Google Scholar 

  87. Loveridge C, Tonelli F, Leclercq T, Lim KG, Long JS, Berdyshev E, Tate RJ, Natarajan V, Pitson SM, Pyne NJ, Pyne S (2010) The sphingosine kinase 1 inhibitor 2-(P-hydroxyanilino)-4-(P-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem. doi:10.1074/jbc.M110.127993

  88. Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JG, Natarajan V (2009) FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem 284:5467–5477

    Article  PubMed  CAS  Google Scholar 

  89. Tonelli F, Lim KG, Loveridge C, Long J, Pitson SM, Tigyi G, Bittman R, Pyne S, Pyne NJ (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22:1536–1542

    Article  PubMed  CAS  Google Scholar 

  90. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-de pend ent manner. J Biol Chem 284:16090–16098

    Article  PubMed  CAS  Google Scholar 

  91. Kasai N, Yu RK (1983) The monoclonal antibody A2B5 is specific to ganglioside GQ1c. Brain Res 277:155–158

    Article  PubMed  CAS  Google Scholar 

  92. Kim SU, Moretto G, Lee V, Yu RK (1986) Neuroimmunology of gangliosides in human neurons and glial cells in culture. J Neurosci Res 15:303–321

    Article  PubMed  CAS  Google Scholar 

  93. Rao MS, Mayer-Proschel M (1997) Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol 188:48–63

    Article  PubMed  CAS  Google Scholar 

  94. Rao MS, Noble M, Mayer-Proschel M (1998) A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA 95:3996–4001

    Article  PubMed  CAS  Google Scholar 

  95. Herrera J, Yang H, Zhang SC, Proschel C, Tresco P, Duncan ID, Luskin M, Mayer-Proschel M (2001) Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo. Exp Neurol 171:11–21

    Article  PubMed  CAS  Google Scholar 

  96. Noble M, Proschel C, Mayer-Proschel M (2004) Getting a GR(i)P on oligodendrocyte development. Dev Biol 265:33–52

    Article  PubMed  CAS  Google Scholar 

  97. Levi G, Gallo V, Ciotti MT (1986) Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and “neuron-like” gamma-aminobutyric acid transport. Proc Natl Acad Sci USA 83:1504–1508

    Article  PubMed  CAS  Google Scholar 

  98. Schnitzer J, Schachner M (1982) Cell type specificity of a neural cell surface antigen recognized by the monoclonal antibody A2B5. Cell Tissue Res 224:625–636

    Article  PubMed  CAS  Google Scholar 

  99. Abney ER, Williams BP, Raff MC (1983) Tracing the development of oligodendrocytes from precursor cells using monoclonal antibodies, fluorescence-activated cell sorting, and cell culture. Dev Biol 100:166–171

    Article  PubMed  CAS  Google Scholar 

  100. Raff MC, Abney ER, Miller RH (1984) Two glial cell lineages diverge prenatally in rat optic nerve. Dev Biol 106:53–60

    Article  PubMed  CAS  Google Scholar 

  101. Saneto RP, de Vellis J (1985) Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium. Proc Natl Acad Sci USA 82:3509–3513

    Article  PubMed  CAS  Google Scholar 

  102. Lubetzki C, Goujet-Zalc C, Gansmuller A, Monge M, Brillat A, Zalc B (1991) Morphological, biochemical, and functional characterization of bulk isolated glial progenitor cells. J Neurochem 56:671–680

    Article  PubMed  CAS  Google Scholar 

  103. Kalyani A, Hobson K, Rao MS (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol 186:202–223

    Article  PubMed  CAS  Google Scholar 

  104. Amat JA, Farooq M, Ishiguro H, Norton WT (1998) Cells of the oligodendrocyte lineage proliferate following cortical stab wounds: an in vitro analysis. Glia 22:64–71

    Article  PubMed  CAS  Google Scholar 

  105. Bansal R, Winkler S, Bheddah S (1999) Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19:7913–7924

    PubMed  CAS  Google Scholar 

  106. Gensert JM, Goldman JE (2001) Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J Neurobiol 48:75–86

    Article  PubMed  CAS  Google Scholar 

  107. Wilson HC, Onischke C, Raine CS (2003) Human oligodendrocyte precursor cells in vitro: phenotypic analysis and differential response to growth factors. Glia 44:153–165

    Article  PubMed  Google Scholar 

  108. Dasgupta S, Everhart MB, Bhat NR, Hogan EL (1997) Neutral monoglycosylceramides in rat brain: occurrence, molecular expression and developmental variation. Dev Neurosci 19:152–161

    Article  PubMed  CAS  Google Scholar 

  109. Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, Humphreys S, Rangnekar VM (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5:457–466

    PubMed  CAS  Google Scholar 

  110. Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, Bondada V, Rangnekar VM, Mattson MP (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 4:957–962

    Article  PubMed  CAS  Google Scholar 

  111. Azmi AS, Wang Z, Burikhanov R, Rangnekar VM, Wang G, Chen J, Wang S, Sarkar FH, Mohammad RM (2008) Critical role of prostate apoptosis response-4 in determining the sensitivity of pancreatic cancer cells to small-molecule inhibitor-induced apoptosis. Mol Cancer Ther 7:2884–2893

    Article  PubMed  CAS  Google Scholar 

  112. Zhao Y, Rangnekar VM (2008) Apoptosis and tumor resistance conferred by Par-4. Cancer Biol Ther 7:1867–1874

    Article  PubMed  CAS  Google Scholar 

  113. Wang G, Silva J, Krishnamurthy K, Bieberich E (2006) A novel isoform of prostate apoptosis response 4 (PAR-4) that co-distributes with F-actin and prevents apoptosis in neural stem cells. Apoptosis 11:315–325

    Article  PubMed  CAS  Google Scholar 

  114. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  115. Sim-Selley LJ, Goforth PB, Mba MU, Macdonald TL, Lynch KR, Milstien S, Spiegel S, Satin LS, Welch SP, Selley DE (2009) Sphingosine-1-phosphate receptors mediate neuromodulatory functions in the CNS. J Neurochem 110:1191–1202

    Article  PubMed  CAS  Google Scholar 

  116. Taha TA, Argraves KM, Obeid LM (2004) Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 1682:48–55

    PubMed  CAS  Google Scholar 

  117. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781:424–434

    PubMed  CAS  Google Scholar 

  118. Qin J, Berdyshev E, Goya J, Natarajan V, Dawson G (2010) Neurons and oligodendrocytes recycle sphingosine 1-phosphate to ceramide: significance for apoptosis and multiple sclerosis. J Biol Chem 285:14134–14143

    Article  PubMed  CAS  Google Scholar 

  119. Coelho RP, Saini HS, Sato-Bigbee C (2010) Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat 91:139–144

    Article  PubMed  CAS  Google Scholar 

  120. Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP (2008) FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol 63:61–71

    Article  PubMed  CAS  Google Scholar 

  121. Miron VE, Schubart A, Antel JP (2008) Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci 274:13–17

    Article  PubMed  CAS  Google Scholar 

  122. Lee CW, Choi JW, Chun J (2010) Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (Fingolimod) in multiple sclerosis. Arch Pharm Res 33:1567–1574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH grants R01AG034389 and R01NS046835 to EB. The author also acknowledges institutional support (under directorship of Dr. Lin Mei) at the Medical College of Georgia/Georgia Health Sciences University, Augusta, GA. We are thankful to the Imaging Core Facility (under directorship of Dr. Paul McNeil) for assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Bieberich.

Additional information

Special Issue: In Honor of Dr. Robert Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieberich, E. There is More to a Lipid than just Being a Fat: Sphingolipid-Guided Differentiation of Oligodendroglial Lineage from Embryonic Stem Cells. Neurochem Res 36, 1601–1611 (2011). https://doi.org/10.1007/s11064-010-0338-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0338-5

Keywords

Navigation