Neurochemical Research

, Volume 36, Issue 4, pp 604–612 | Cite as

Insulin and β-adrenergic Receptors Inhibit Retinal Endothelial Cell Apoptosis Through Independent Pathways

  • Surekha Rani Panjala
  • Jena J. SteinleEmail author


Diabetic retinopathy results from altered insulin receptor signaling. Based on previous studies demonstrating an interaction between β-adrenergic receptors and insulin signaling in hyperglycemic conditions, we hypothesized that β-adrenergic receptor stimulation and insulin stimulation would act synergistically to inhibit one of the hallmarks of diabetic retinopathy, namely retinal endothelial cell apoptosis. To test this hypothesis, human retinal endothelial cells were grown in high glucose (25 mM) medium and treated with a β-1-adrenergic receptor agonist (xamoterol, 10 μM) alone, insulin alone (10 nM) or xamoterol + insulin. We then assessed changes in the levels of insulin receptor, insulin-like growth factor (IGF-1) receptor, and Akt phosphorylation, as well as cleaved caspase 3. Xamoterol alone significantly decreased insulin receptor, IGF-1 receptor and Akt phosphorylation, whereas insulin alone increased insulin receptor, IGF-1 receptor, and Akt phosphorylation. Xamoterol significantly decreased apoptosis of retinal endothelial cells. This data suggests that both β-adrenergic receptors and insulin can inhibit retinal endothelial cell apoptosis in hyperglycemic conditions, but inhibition occurs through independent pathways. These findings have implications for treatments of diabetic retinopathy.


Retina Apoptosis β-adrenergic receptors Insulin Insulin-like growth factor 1 (IGF-1) 



The authors would like to thank Dr. Dianna Johnson for her help in editing the text. This work is supported by a Career Development Award from JDRF 2-2006-114 (JJS), JDRF Translational Award 17-2008-1044 (JJS), the William and Mary Greve Special Scholars Award from Research to Prevent Blindness and a departmental award from the Research to Prevent Blindness (Dr. Barrett Haik, chair), NEI Vision Core Grant: PHS 3P30 EY013080 (PI: Dianna Johnson).


  1. 1.
    Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58PubMedCrossRefGoogle Scholar
  2. 2.
    Klein R (1996) Diabetic retinopathy. Annu Rev Public Health 17:137–158PubMedCrossRefGoogle Scholar
  3. 3.
    Wiley LA, Rupp GR, Steilnle JJ (2005) Sympathetic innervation regulates basement membrane thickening and pericyte number in rat retina. Invest Ophthalmol Vis Sci 46:744–748PubMedCrossRefGoogle Scholar
  4. 4.
    Williams KP, Steinle JJ (2009) Maintenance of beta-adrenergic receptor signaling can reduce fas signaling in human retinal endothelial cells. Exp Eye Res 89:448–455PubMedCrossRefGoogle Scholar
  5. 5.
    Steinle JJ, Kern TS, Thomas SA et al (2009) Increased basement membrane thickness, pericyte ghosts, and loss of retinal thickness and cells in dopamine beta hydroxylase knockout mice. Exp Eye Res 88:1014–1019PubMedCrossRefGoogle Scholar
  6. 6.
    Panjala SR, Thomas SA, Steinle JJ (2009) Effects of insulin-like growth factor-1 (IGF-1) receptor signaling on rates of apoptosis in retina of dopamine beta hydroxylase (Dbh(-/-)) knockout mice. Auton Neurosci 15:21–26Google Scholar
  7. 7.
    Steinle JJ, BooZ GW, Meininger CJ et al (2003) Beta 3-adrenergic receptors regulate retinal endothelial cell migration and proliferation. J Biol Chem 278:20681–20686PubMedCrossRefGoogle Scholar
  8. 8.
    Steinle JJ, Chin VC, Williams KP et al (2008) Beta-adrenergic receptor stimulation modulates iNOS protein levels through p38 and ERK1/2 signaling in human retinal endothelial cells. Exp Eye Res 87:30–34PubMedCrossRefGoogle Scholar
  9. 9.
    Miura S, Ohno I, Suzuki J et al (2003) Inhibition of matrix metalloproteinases prevents cardiac hypertrophy induced by beta-adrenergic stimulation in rats. J Cardiovasc Pharmacol 42:174–181PubMedCrossRefGoogle Scholar
  10. 10.
    Rosenfeld RG, Charles T, Roberts J (1999) The IGF system: Molecular Biology, Physiology, Clinical application. Contemporary Endocrinology. Humana Press, NJGoogle Scholar
  11. 11.
    Feik E, Baierl A, Hieger B et al (2010) Association of IGF1 and IGFBP3 polymorphisms with colorectal polyps and colorectal cancer risk. Cancer Causes Control 21:91–97PubMedCrossRefGoogle Scholar
  12. 12.
    Yamada PM, Lee KW (2009) Perspectives in mammalian IGFBP-3 biology: local versus systemic action. Am J Physiol Cell Physiol 296:C954–C976PubMedCrossRefGoogle Scholar
  13. 13.
    Barber AJ, Nakamura M, Wolpert EB et al (2001) Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 276:32814–32821PubMedCrossRefGoogle Scholar
  14. 14.
    Nakamura M, Barber AJ, Antonetti DA et al (2001) Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem 276:43748–43755PubMedCrossRefGoogle Scholar
  15. 15.
    Steinle JJ (2007) Sympathetic neurotransmission modulates expression of inflammatory markers in the rat retina. Exp Eye Res 84:118–125PubMedCrossRefGoogle Scholar
  16. 16.
    Jiang Y, Steinle JJ (2010) Systemic propranolol reduces B-wave amplitude in the ERG and increases IGF-1 receptor phosphorylation in rat retina. Invest Ophthalmol Vis Sci 51:2730–2735PubMedCrossRefGoogle Scholar
  17. 17.
    Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res 22:545–562PubMedCrossRefGoogle Scholar
  18. 18.
    Nitert MD, Chisalita SI, Olsson K et al (2005) IGF-I/insulin hybrid receptors in human endothelial cells. Mol Cell Endocrinol 229:31–37PubMedCrossRefGoogle Scholar
  19. 19.
    Cotlier E, Davidson C (1983) Insulin receptors in calf and human retinal blood vessels. Ophthalmic Res 15:29–37PubMedCrossRefGoogle Scholar
  20. 20.
    Haskell JF, Meezan E, Pillion DJ (1984) Identification and characterization of the insulin receptor of bovine retinal microvessels. Endocrinology 115:698–704PubMedCrossRefGoogle Scholar
  21. 21.
    Das A, Pansky B, Budd GC et al (1984) Immunocytochemistry of mouse and human retina with antisera to insulin and S-100 protein. Curr Eye Res 3:1397–1403PubMedCrossRefGoogle Scholar
  22. 22.
    Reiter CE, Sandirasegarane L, Wolpert EB et al (2003) Characterization of insulin signaling in rat retina in vivo and ex vivo. Am J Physiol Endocrinol Metab 285:E763–E774PubMedGoogle Scholar
  23. 23.
    Reiter CE, Wu X, Sandirasegarane L et al (2006) Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 55:1148–1156PubMedCrossRefGoogle Scholar
  24. 24.
    Das A, Pansky B, Budd GC (1987) Demonstration of insulin-specific mRNA in cultured rat retinal glial cells. Invest Ophthalmol Vis Sci 28:1800–1810PubMedGoogle Scholar
  25. 25.
    Pessin JE, Gitomer W, Oka Y et al (1983) Beta-adrenergic regulation of insulin and epidermal growth factor receptors in rat adipocytes. J Biol Chem 258:7386–7394PubMedGoogle Scholar
  26. 26.
    Baltensperger K, Karoor V, Paul H et al (1996) The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J Biol Chem 271:1061–1064PubMedCrossRefGoogle Scholar
  27. 27.
    Walker R, Steinle J (2007) Role of beta-adrenergic receptors in inflammatory marker expression in muller cells. Invest Ophthalmol Vis Sci 48:5276–5281PubMedCrossRefGoogle Scholar
  28. 28.
    Joussen AM, Doehmen S, Le ML et al (2009) TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis 15:1418–1428PubMedGoogle Scholar
  29. 29.
    White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422PubMedGoogle Scholar
  30. 30.
    Grounds MD, Radley HG, Gebski BL et al (2008) Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin Exp Pharmacol Physiol 35:846–851PubMedCrossRefGoogle Scholar
  31. 31.
    Ferry RJ Jr, Katz LE, Grimberg A et al (1999) Cellular actions of insulin-like growth factor binding proteins. Horm Metab Res 31:192–202PubMedCrossRefGoogle Scholar
  32. 32.
    Yi HK, Kim SY, Hwang PH et al (2005) Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells. Biochem Biophys Res Commun 330:760–767PubMedCrossRefGoogle Scholar
  33. 33.
    Lofqvist C, Chen J, Connor KM et al (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci USA 104:10589–10594PubMedCrossRefGoogle Scholar
  34. 34.
    Lofqvist C, Willett KL, Aspegren O et al (2009) Quantification and localization of the IGF/insulin system expression in retinal blood vessels and neurons during oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci 50:1831–1837PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Ophthalmology, Hamilton Eye InstituteUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations