Skip to main content
Log in

2-Deoxyribose Deprives Cultured Astrocytes of their Glutathione

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

High concentrations of 2-deoxy-d-ribose (2dRib) have been reported to cause oxidative stress and to disturb the glutathione (GSH) metabolism of various cell types. Exposure of astrocyte-rich primary cultures to millimolar concentrations of 2dRib or its stereoisomer 2-deoxy-l-ribose, but not the incubation with ribose, 2-deoxyglucose, glucose, fructose or saccharose, lowered the cellular GSH content in a time and concentration dependent manner. After exposure for 4 h to 30 mM 2dRib the cells contained 2dRib in a concentration of about 24 mM. Under these conditions 2dRib did not compromise cell viability and the ability of the cells to synthesise GSH, nor were the cellular ratio of glutathione disulfide (GSSG) to GSH and the extracellular concentrations of GSH or GSSG increased. These data demonstrate that 2dRib deprives viable cultured astrocytes of GSH and suggest that a cellular reaction of GSH with 2dRib or its metabolites is involved in the deprivation of astrocytic GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brown NS, Bicknell R (1998) Thymidine phosphorylase, 2-deoxy-d-ribose and angiogenesis. Biochem J 334:1–8

    CAS  PubMed  Google Scholar 

  2. Dedon PC (2008) The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Res Toxicol 21:206–219

    Article  PubMed  Google Scholar 

  3. Ardestani A, Yazdanparast R, Nejad AS (2008) 2-Deoxy-d-ribose-induced oxidative stress causes apoptosis in human monocytic cells: prevention by pyridoxal-5′-phosphate. Toxicol In Vitro 22:968–979

    Article  CAS  PubMed  Google Scholar 

  4. Lee KH, Choi EM (2008) Myricetin, a naturally occurring flavonoid, prevents 2-deoxy-d-ribose induced dysfunction and oxidative damage in osteoblastic MC3T3–E1 cells. Eur J Pharmacol 591:1–6

    Article  CAS  PubMed  Google Scholar 

  5. Lee YJ, Suh KS, Choi MC et al (2010) Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-d-ribose-induced oxidative damage. Phytother Res 24:419–423

    Article  CAS  PubMed  Google Scholar 

  6. Koh G, Suh KS, Chon S et al (2005) Elevated cAMP level attenuates 2-deoxy-d-ribose-induced oxidative damage in pancreatic beta-cells. Arch Biochem Biophys 438:70–79

    Article  CAS  PubMed  Google Scholar 

  7. Suh KS, Choi EM, Kwon M et al (2009) Kaempferol attenuates 2-deoxy-d-ribose-induced oxidative cell damage in MC3T3–E1 osteoblastic cells. Biol Pharm Bull 32:746–749

    Article  CAS  PubMed  Google Scholar 

  8. Koh G, Lee D-H, Woo J-t (2010) 2-Deoxy-d-ribose induces cellular damage by increasing oxidative stress and protein glycation in a pancreatic beta-cell line. Metabolism 59:325–332

    Article  CAS  PubMed  Google Scholar 

  9. Monnier VM (1990) Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 45:105–111

    Google Scholar 

  10. Munanairi A, O’Banion SK, Gamble R et al (2007) The multiple Maillard reactions of ribose and deoxyribose sugars and sugar phosphates. Carbohydr Res 342:2575–2592

    Article  CAS  PubMed  Google Scholar 

  11. Thornalley PJ (2005) Dicarbonyl intermediates in the Maillard reaction. Ann NY Acad Sci 1043:111–117

    Article  CAS  PubMed  Google Scholar 

  12. Grillo MA, Colombatto S (2008) Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids 35:29–36

    Article  CAS  PubMed  Google Scholar 

  13. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125–150

    CAS  PubMed  Google Scholar 

  14. Krautwald M, Münch G (2010) Advanced glycation end products as biomarkers and gerontotoxins—A basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol., in press

  15. Marini M, Zunica G, Franceschi C (1985) Inhibition of cell proliferation by D-ribose and deoxy-D-ribose. Proc Soc Exp Biol Med 180:246–257

    CAS  PubMed  Google Scholar 

  16. Ceruti S, Barbieri D, Veronese E et al (1997) Different pathways of apoptosis revealed by 2-chloro-adenosine and deoxy-D-ribose in mammalian astroglial cells. J Neurosci Res 47:372–383

    Article  CAS  PubMed  Google Scholar 

  17. Kletsas D, Barbieri D, Stathakos D et al (1998) The highly reducing sugar 2-deoxy-D-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochem Biophys Res Commun 243:416–425

    Article  CAS  PubMed  Google Scholar 

  18. Abbracchio MP, Ceruti S, Barbieri D et al (1995) A novel action for adenosine: apoptosis of astroglial cells in rat brain primary cultures. Biochem Biophys Res Commun 213:908–915

    Article  CAS  PubMed  Google Scholar 

  19. Barbieri D, Grassilli E, Monti D et al (1994) D-ribose and deoxy-D-ribose induce apoptosis in human quiescent peripheral blood mononuclear cells. Biochem Biophys Res Commun 201:1109–1116

    Article  CAS  PubMed  Google Scholar 

  20. Fico A, Manganelli G, Cigliano L et al (2008) 2-Deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione. Free Radic Biol Med 45:211–217

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt MM, Dringen R (2010) Glutathione Synthesis and Metabolism. In: Choi IY; Gruetter R, eds. Neural Metabolism in vivo. Springer Science, New York, in press

  22. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  CAS  PubMed  Google Scholar 

  23. Kubatova A, Murphy TC, Combs C et al (2006) Astrocytic biotransformation of trans-4-hydroxy-2-nonenal is dose-dependent. Chem Res Toxicol 19:844–851

    Article  CAS  PubMed  Google Scholar 

  24. Berhane K, Widersten M, Engstrom A et al (1994) Detoxication of base propenals and other α, β-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci USA 91:1480–1484

    Article  CAS  PubMed  Google Scholar 

  25. Sies H, Packer L (2005) Glutathione transferases and γ-glutamyl transpeptidases. Elsevier, London

    Google Scholar 

  26. Awasthi Y (2007) Toxicology of glutathione transferases. Taylor & Francis Group, Boca Raton

    Google Scholar 

  27. Margis R, Dunand C, Teixeira FK et al (2008) Glutathione peroxidase family—an evolutionary overview. FEBS J 275:3959–3970

    Article  CAS  PubMed  Google Scholar 

  28. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    CAS  PubMed  Google Scholar 

  29. Beard KM, Shangari N, Wu B et al (2003) Metabolism, not autoxidation, plays a role in alpha-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: relevance for diabetes mellitus. Mol Cell Biochem 252:331–338

    Article  CAS  PubMed  Google Scholar 

  30. Monti MG, Ghiaroni S, Marverti G et al (2004) Polyamine depletion switches the form of 2-deoxy-D-ribose-induced cell death from apoptosis to necrosis in HL-60 cells. Int J Biochem Cell Biol 36:1238–1248

    Article  CAS  PubMed  Google Scholar 

  31. Hamprecht B, Löffler F (1985) Primary glial cultures as a model for studying hormone action. Meth Enzymol 109:341–345

    Article  CAS  PubMed  Google Scholar 

  32. Löffler F, Lohmann SM, Walckhoff B, Walter U, Hamprecht B (1986) Immunocytochemical characterization of neuron-rich primary cultures of embryonic rat brain cells by established neuronal and glial markers and by monospecific antisera against cyclic nucleotide-dependent protein kinases and the synaptic vesicle protein synapsin I. Brain Res 363:205–221

    Article  Google Scholar 

  33. Reinhart PH, Pfeiffer B, Spengler S, Hamprecht B (1990) Purification of glycogen phosphorylase from bovine brain and immunocytochemical examination of rat glial primary cultures using monoclonal antibodies raised against this enzyme. J Neurochem 54:1474–1483

    Article  CAS  PubMed  Google Scholar 

  34. Gutterer JM, Dringen R, Hirrlinger J, Hamprecht B (1999) Purification of glutathione reductase from bovine brain, generation of an antiserum and localization of the enzyme in neural cells. J Neurochem 73:1422–1430

    Article  CAS  PubMed  Google Scholar 

  35. Dang TN, Bishop GM, Dringen R, Robinson SR (2010) The putative heme transporter HCP1 is expressed in cultured astrocytes and contributes to the uptake of hemin. Glia 58:55–65

    Article  PubMed  Google Scholar 

  36. Dringen R, Hamprecht B (1996) Glutathione content as an indicator for the presence of metabolic pathways of amino acids in astroglial cultures. J Neurochem 67:1375–1382

    Article  CAS  PubMed  Google Scholar 

  37. Dringen R, Kranich O, Hamprecht B (1997) The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem Res 22:727–733

    Article  CAS  PubMed  Google Scholar 

  38. Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt MM, Dringen R (2009) Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenerg 1:1–10

    Article  Google Scholar 

  40. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228

    Article  CAS  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  42. Rocklin RD, Clarke AP, Weitzhandler M (1998) Improved long-term reproducibility for pulsed amperometric detection of carbohydrates via a new quadruple-potential waveform. Anal Chem 70:1496–1501

    Article  CAS  Google Scholar 

  43. Minich T, Riemer J, Schulz JB et al (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97:373–384

    Article  CAS  PubMed  Google Scholar 

  44. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt MM, Dringen R (2010) Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int., in press

  46. Dringen R, Hamprecht B (1998) Glutathione restoration as indicator for cellular metabolism of astroglial cells. Dev Neurosci 20:401–407

    Article  CAS  PubMed  Google Scholar 

  47. Hirrlinger J, König J, Keppler D et al (2001) The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem 76:627–636

    Article  CAS  PubMed  Google Scholar 

  48. Jeric I, Horvat S (2009) Screening for glucose-triggered modifications of glutathione. J Pept Sci 15:540–547

    Article  CAS  PubMed  Google Scholar 

  49. Linetsky M, Shipova EV, Argirov OK (2006) Influence of glutathione fructosylation on its properties. Arch Biochem Biophys 449:34–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Uwe Nehls (University of Bremen) for providing the chromatography column for sugar analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M.M., Greb, H., Koliwer-Brandl, H. et al. 2-Deoxyribose Deprives Cultured Astrocytes of their Glutathione. Neurochem Res 35, 1848–1856 (2010). https://doi.org/10.1007/s11064-010-0251-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0251-y

Keywords

Navigation