Neurochemical Research

, Volume 35, Issue 11, pp 1828–1839 | Cite as

Sulbutiamine Counteracts Trophic Factor Deprivation Induced Apoptotic Cell Death in Transformed Retinal Ganglion Cells

  • Kui Dong Kang
  • Aman Shah Abdul Majid
  • Kyung-A Kim
  • Kyungsu Kang
  • Hong Ryul Ahn
  • Chu Won Nho
  • Sang Hoon JungEmail author


Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B1 and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture.


Sulbutiamine Trophic factor deprivation RGC-5 cells Glaucoma 



The authors thank Alcon Research, Ltd., for providing the RGC-5 cells. This work was supported by grant No.RTI05-01-02 from the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE).


  1. 1.
    Ritch R (2007) Natural compounds: evidence for a protective role in eye disease. Can J Ophthalmol 42:425–438CrossRefPubMedGoogle Scholar
  2. 2.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  3. 3.
    Izzotti A, Bagnis A, Sacca SC (2006) The role of oxidative stress in glaucoma. Mutat Res 612:105–114CrossRefPubMedGoogle Scholar
  4. 4.
    Osborne NN, Ji D, Majid A et al (2010) ACS67, a hydrogen sulphide-releasing derivative of latanoprost acid, attenuates retinal ischemia and oxidative stress to RGC-5 cells in culture. Invest Ophthalmol Vis Sci 51:284–294CrossRefPubMedGoogle Scholar
  5. 5.
    Shimazawa M, Yamashima T, Agarwal N et al (2005) Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage. Brain Res 1053:185–194CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang B, Safa R, Rusciano D et al (2007) Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging influences to the retina caused by ischemia/reperfusion. Brain Res 1159:40–53CrossRefPubMedGoogle Scholar
  7. 7.
    Mozaffarieh M, Grieshaber MC, Orgul S et al (2008) The potential value of natural antioxidative treatment in glaucoma. Surv Ophthalmol 53:479–505CrossRefPubMedGoogle Scholar
  8. 8.
    Asregadoo ER (1979) Blood levels of thiamine and ascorbic acid in chronic open-angle glaucoma. Ann Ophthalmol 11:1095–1100PubMedGoogle Scholar
  9. 9.
    Suzuki S, Kumanomido T, Nagata E et al (1997) Optic neuropathy from thiamine deficiency. Intern Med 36:532CrossRefPubMedGoogle Scholar
  10. 10.
    Sedel F, Challe G, Mayer JM et al (2008) Thiamine responsive pyruvate dehydrogenase deficiency in an adult with peripheral neuropathy and optic neuropathy. J Neurol Neurosurg Psychiatry 79:846–847CrossRefPubMedGoogle Scholar
  11. 11.
    Lomaestro BM, Malone M (1995) Glutathione in health and disease: pharmacotherapeutic issues. Ann Pharmacother 29:1263–1273PubMedGoogle Scholar
  12. 12.
    Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257:L163–173PubMedGoogle Scholar
  13. 13.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760CrossRefPubMedGoogle Scholar
  14. 14.
    Gherghel D, Griffiths HR, Hilton EJ et al (2005) Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 46:877–883CrossRefPubMedGoogle Scholar
  15. 15.
    Bruce WR, Furrer R, Shangari N et al (2003) Marginal dietary thiamin deficiency induces the formation of colonic aberrant crypt foci (ACF) in rats. Cancer Lett 202:125–129CrossRefPubMedGoogle Scholar
  16. 16.
    Portari GV, Marchini JS, Vannucchi H et al (2008) Antioxidant effect of thiamine on acutely alcoholized rats and lack of efficacy using thiamine or glucose to reduce blood alcohol content. Basic Clin Pharmacol Toxicol 103:482–486CrossRefPubMedGoogle Scholar
  17. 17.
    Shangari N, Mehta R, O’Brien PJ (2007) Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content. Chem Biol Interact 165:146–154CrossRefPubMedGoogle Scholar
  18. 18.
    Bettendorff L, Weekers L, Wins P et al (1990) Injection of sulbutiamine induces an increase in thiamine triphosphate in rat tissues. Biochem Pharmacol 40:2557–2560CrossRefPubMedGoogle Scholar
  19. 19.
    Micheau J, Durkin TP, Destrade C et al (1985) Chronic administration of sulbutiamine improves long term memory formation in mice: possible cholinergic mediation. Pharmacol Biochem Behav 23:195–198CrossRefPubMedGoogle Scholar
  20. 20.
    Ollat H, Laurent B, Bakchine S et al (2007) Effects of the association of sulbutiamine with an acetylcholinesterase inhibitor in early stage and moderate Alzheimer disease. Encephale 33:211–215CrossRefPubMedGoogle Scholar
  21. 21.
    Shah SN (2003) Adjuvant role of vitamin B analogue (sulbutiamine) with anti-infective treatment in infection associated asthenia. J Assoc Physicians India 51:891–895PubMedGoogle Scholar
  22. 22.
    Van Reeth O (1999) Pharmacologic and therapeutic features of sulbutiamine. Drugs Today (Barc) 35:187–192Google Scholar
  23. 23.
    Dmitriev DG, Gamidov SI, Permiakova OV (2005) Clinical efficacy of the drug enerion in the treatment of patients with psychogenic (functional) erectile dysfunction. Urologiia 32–35Google Scholar
  24. 24.
    Douzenis A, Michopoulos I, Lykouras L (2006) Sulbutiamine, an ‘innocent’ over the counter drug, interferes with therapeutic outcome of bipolar disorder. World J Biol Psychiatry 7:183–185CrossRefPubMedGoogle Scholar
  25. 25.
    Charles I, Khalyfa A, Kumar DM et al (2005) Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci 46:1330–1338CrossRefPubMedGoogle Scholar
  26. 26.
    Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57CrossRefPubMedGoogle Scholar
  27. 27.
    Osborne NN, Chidlow G, Nash MS et al (1999) The potential of neuroprotection in glaucoma treatment. Curr Opin Ophthalmol 10:82–92CrossRefPubMedGoogle Scholar
  28. 28.
    Tezel G, Wax MB (1999) Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Invest Ophthalmol Vis Sci 40:2660–2667PubMedGoogle Scholar
  29. 29.
    Krishnamoorthy RR, Agarwal P, Prasanna G et al (2001) Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 86:1–12CrossRefPubMedGoogle Scholar
  30. 30.
    Van Bergen NJ, Wood JP, Chidlow G et al (2009) Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci 50:4267–4272CrossRefPubMedGoogle Scholar
  31. 31.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  32. 32.
    Hong S, Kim CY, Lee JE et al (2009) Agmatine protects cultured retinal ganglion cells from tumor necrosis factor-alpha-induced apoptosis. Life Sci 84:28–32CrossRefPubMedGoogle Scholar
  33. 33.
    Aschner JL, Foster SL, Kaplowitz M et al (2007) Heat shock protein 90 modulates endothelial nitric oxide synthase activity and vascular reactivity in the newborn piglet pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 292:L1515–1525CrossRefPubMedGoogle Scholar
  34. 34.
    Shimazawa M, Nakajima Y, Mashima Y et al (2009) Docosahexaenoic acid (DHA) has neuroprotective effects against oxidative stress in retinal ganglion cells. Brain Res 1251:269–275CrossRefPubMedGoogle Scholar
  35. 35.
    Cook JA, Mitchell JB (1995) Measurement of thiols in cell populations from tumor and normal tissue. Methods Enzymol 251:203–212CrossRefPubMedGoogle Scholar
  36. 36.
    Bettendorff L, Wins P (1994) Mechanism of thiamine transport in neuroblastoma cells. Inhibition of a high affinity carrier by sodium channel activators and dependence of thiamine uptake on membrane potential and intracellular ATP. J Biol Chem 269:14379–14385PubMedGoogle Scholar
  37. 37.
    Trovero F, Gobbi M, Weil-Fuggaza J et al (2000) Evidence for a modulatory effect of sulbutiamine on glutamatergic and dopaminergic cortical transmissions in the rat brain. Neurosci Lett 292:49–53CrossRefPubMedGoogle Scholar
  38. 38.
    Matsuda T, Cooper JR (1981) Thiamine as an integral component of brain synaptosomal membranes. Proc Natl Acad Sci U S A 78:5886–5889CrossRefPubMedGoogle Scholar
  39. 39.
    Makarchikov AF, Lakaye B, Gulyai IE et al (2003) Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell Mol Life Sci 60:1477–1488CrossRefPubMedGoogle Scholar
  40. 40.
    Bettendorff L, Hennuy B, De Clerck A et al (1994) Chloride permeability of rat brain membrane vesicles correlates with thiamine triphosphate content. Brain Res 652:157–160CrossRefPubMedGoogle Scholar
  41. 41.
    Varma R, Peeples P, Walt JG et al (2008) Disease progression and the need for neuroprotection in glaucoma management. Am J Manag Care 14:S15–19PubMedGoogle Scholar
  42. 42.
    Wein FB, Levin LA (2002) Current understanding of neuroprotection in glaucoma. Curr Opin Ophthalmol 13:61–67CrossRefPubMedGoogle Scholar
  43. 43.
    Leske MC, Heijl A, Hussein M et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56PubMedGoogle Scholar
  44. 44.
    Baptiste DC, Hartwick AT, Jollimore CA et al (2004) An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 66:1113–1122CrossRefPubMedGoogle Scholar
  45. 45.
    Lascaratos G, Ji D, Wood JP et al (2007) Visible light affects mitochondrial function and induces neuronal death in retinal cell cultures. Vision Res 47:1191–1201CrossRefPubMedGoogle Scholar
  46. 46.
    Sacca SC, Izzotti A, Rossi P et al (2007) Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 84:389–399CrossRefPubMedGoogle Scholar
  47. 47.
    Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513CrossRefPubMedGoogle Scholar
  48. 48.
    Osborne NN, Casson RJ, Wood JP et al (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147CrossRefPubMedGoogle Scholar
  49. 49.
    Aslan M, Cort A, Yucel I (2008) Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med 45:367–376CrossRefPubMedGoogle Scholar
  50. 50.
    Wood PL, Khan MA, Moskal JR (2007) Cellular thiol pools are responsible for sequestration of cytotoxic reactive aldehydes: central role of free cysteine and cysteamine. Brain Res 1158:158–163CrossRefPubMedGoogle Scholar
  51. 51.
    Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kui Dong Kang
    • 1
    • 2
  • Aman Shah Abdul Majid
    • 1
    • 3
  • Kyung-A Kim
    • 4
  • Kyungsu Kang
    • 4
  • Hong Ryul Ahn
    • 4
  • Chu Won Nho
    • 4
  • Sang Hoon Jung
    • 4
    Email author
  1. 1.Department of Ophthalmology, Oxford Eye HospitalUniversity of OxfordHeadington, OxfordUK
  2. 2.Department of OphthalmologyThe Catholic University of KoreaSeoulKorea
  3. 3.Advanced Medical and Dental InstituteUniversiti Sains MalaysiaPenangMalaysia
  4. 4.Natural Products Research CenterKorea Institute of Science and Technology (KIST) Gangneung InstituteDaejeon-dong, GangneungKorea

Personalised recommendations