Skip to main content
Log in

Glutathione Conjugates with Dopamine-Derived Quinones to Form Reactive or Non-Reactive Glutathione-Conjugates

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study we demonstrate for the first time that short-lived intermediate glutathione (GSH) conjugates (5-S-GSH-DA-o-quinone and 2-S-GSH-DA-o-quinone) must have first formed when GSH reacted with dopamine (DA)-derived DA-o-quinones without enzymatic catalysis in solutions. These intermediate GSH-conjugates are unstable and would finally transform into reactive or non-reactive GSH-conjugates dependent on ambient reductive forces. We demonstrated that, under sufficient reductive force, the intermediate GSH-conjugates could be reduced and transform into non-reactive 5-S-GSH-DA and 2-S-GSH-DA. However, under insufficient reductive forces, the intermediate GSH-conjugates could cyclize spontaneously to form reactive 7-S-GSH-aminochrome (7-S-GSH-AM). The 7-S-GSH-AM is so reactive and toxic that it could further conjugate with another GSH to form non-reactive 4,7-bi-GSH-5,6-dihydroindole in solutions. Furthermore 7-S-GSH-AM could abrogate tyrosinase activity rapidly and even inhibit proteasome activity in solutions. However, 7-S-GSH-AM could undergo automatically internal rearrangement and transform into non-reactive 7-S-GSH-5,6-dihydroindole if it had not conjugated with GSH. Therefore, insufficient ambient reductive force, such as decreased GSH concentration, could lead to decreased GSH detoxification efficiency for toxic DA quinones. Based on findings in this study, we propose two potential detrimental positive feedback loops involving accelerated DA oxidation, increased GSH consumption and impaired GSH detoxification efficiency, as the potential underlying chemical explanation for dopaminergic neuron degeneration in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meara RJ (1994) Review: the pathophysiology of the motor signs in Parkinson’s disease. Age Ageing 23:342–346

    Article  CAS  PubMed  Google Scholar 

  2. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942

    Article  CAS  PubMed  Google Scholar 

  3. Pan J, Xiao Q, Sheng CY et al (2009) Blockade of the translocation and activation of c-Jun N-terminal kinase 3 (JNK3) attenuates dopaminergic neuronal damage in mouse model of Parkinson’s disease. Neurochem Int 54:418–425

    Article  CAS  PubMed  Google Scholar 

  4. Chetsawang B, Kooncumchoo P, Govitrapong P et al (2008) 1-Methyl-4-phenyl-pyridinium ion-induced oxidative stress, c-Jun phosphorylation and DNA fragmentation factor-45 cleavage in SK-N-SH cells are averted by selegiline. Neurochem Int 53:283–288

    Article  CAS  PubMed  Google Scholar 

  5. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    CAS  PubMed  Google Scholar 

  6. Bergamini CM, Gambetti S, Dondi A et al (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626

    Article  CAS  PubMed  Google Scholar 

  7. Kuhn DM, Arthur R Jr (1998) Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. J Neurosci 18:7111–7117

    CAS  PubMed  Google Scholar 

  8. Xu Y, Stokes AH, Roskoski R Jr et al (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54:691–697

    Article  CAS  PubMed  Google Scholar 

  9. Izumi Y, Sawada H, Yamamoto N et al (2005) Iron accelerates the conversion of dopamine-oxidized intermediates into melanin and provides protection in SH-SY5Y cells. J Neurosci Res 82:126–137

    Article  CAS  PubMed  Google Scholar 

  10. Asanuma M, Miyazaki I (2006) Nonsteroidal anti-inflammatory drugs in Parkinson’s disease: possible involvement of quinone formation. Expert Rev Neurother 6:1313–1325

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi M, Kim J, Kobayashi N et al (2006) Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein. Biochem Biophys Res Commun 349:1139–1144

    Article  CAS  PubMed  Google Scholar 

  12. Arriagada C, Paris I, Sanchez de las Matas MJ et al (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  13. Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H(2)O(2) release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J Biol Chem 280:15587–15594

    Article  CAS  PubMed  Google Scholar 

  14. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  CAS  PubMed  Google Scholar 

  15. Zhou ZD, Lim TM (2009) Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res 43:417–430

    Article  CAS  PubMed  Google Scholar 

  16. Izumi Y, Sawada H, Sakka N et al (2005) p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res 79:849–860

    Article  CAS  PubMed  Google Scholar 

  17. Offen D, Ziv I, Sternin H et al (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp Neurol 141:32–39

    Article  CAS  PubMed  Google Scholar 

  18. Dagnino-Subiabre A, Cassels BK, Baez S et al (2000) Glutathione transferase M2–2 catalyzes conjugation of dopamine and dopa o-quinones. Biochem Biophys Res Commun 274:32–36

    Article  CAS  PubMed  Google Scholar 

  19. Segura-Aguilar J, Baez S, Widersten M et al (1997) Human class Mu glutathione transferases, in particular isoenzyme M2–2, catalyze detoxication of the dopamine metabolite aminochrome. J Biol Chem 272:5727–5731

    Article  CAS  PubMed  Google Scholar 

  20. Zhou ZD, Lim TM (2009) Roles of glutathione (GSH) in dopamine (DA) oxidation studied by improved tandem HPLC plus ESI-MS. Neurochem Res 34:316–326

    Article  CAS  PubMed  Google Scholar 

  21. Zhou ZD, Kerk SY, Xiong GG et al (2009) Dopamine auto-oxidation aggravates non-apoptotic cell death induced by over-expression of human A53T mutant alpha-synuclein in dopaminergic PC12 cells. J Neurochem 108:601–610

    Article  CAS  PubMed  Google Scholar 

  22. Hirrlinger J, Schulz JB, Dringen R (2002) Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J Neurochem 82:458–467

    Article  CAS  PubMed  Google Scholar 

  23. Rabinovic AD, Lewis DA, Hastings TG (2000) Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 101:67–76

    Article  CAS  PubMed  Google Scholar 

  24. Jenner P, Dexter DT, Sian J (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):82–87

    Article  Google Scholar 

  25. Spencer JP, Jenner P, Halliwell B (1995) Superoxide-dependent depletion of reduced glutathione by L-DOPA and dopamine. Relevance to Parkinson’s disease. Neuroreport 6:1480–1484

    Article  CAS  PubMed  Google Scholar 

  26. Spencer JP, Jenner P, Daniel SE et al (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122

    Article  CAS  PubMed  Google Scholar 

  27. Jameson GN, Zhang J, Jameson RF et al (2004) Kinetic evidence that cysteine reacts with dopaminoquinone via reversible adduct formation to yield 5-cysteinyl-dopamine: an important precursor of neuromelanin. Org Biomol Chem 2:777–782

    Article  CAS  PubMed  Google Scholar 

  28. Shen XM, Dryhurst G (1996) Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson’s disease. Chem Res Toxicol 9:751–763

    Article  CAS  PubMed  Google Scholar 

  29. Shen XM, Dryhurst G (1998) Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Chem Res Toxicol 11:824–837

    Article  CAS  PubMed  Google Scholar 

  30. Vauzour D, Ravaioli G, Vafeiadou K et al (2008) Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: implications for Parkinson’s disease and protection by polyphenols. Arch Biochem Biophys 476:145–151

    Article  CAS  PubMed  Google Scholar 

  31. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605

    Article  CAS  PubMed  Google Scholar 

  32. Palumbo A, d’Ischia M, Misuraca G et al (1987) Effect of metal ions on the rearrangement of dopachrome. Biochim Biophys Acta 925:203–209

    CAS  PubMed  Google Scholar 

  33. Kang MJ, Gil SJ, Koh HC (2009) Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol Lett 188:148–152

    Article  CAS  PubMed  Google Scholar 

  34. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  35. Zecca L, Youdim MB, Riederer P et al (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  36. Jia Z, Zhu H, Misra BR et al (2008) Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection. Neurochem Res 33:2197–2205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Biomedical Research Council, A*STAR, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tit Meng Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 31 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z.D., Lim, T.M. Glutathione Conjugates with Dopamine-Derived Quinones to Form Reactive or Non-Reactive Glutathione-Conjugates. Neurochem Res 35, 1805–1818 (2010). https://doi.org/10.1007/s11064-010-0247-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0247-7

Keywords

Navigation