Skip to main content

Advertisement

Log in

Differential Patterns of Alcohol Consumption and Dopamine-2 Receptor Binding in Wistar-Kyoto and Wistar Rats

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Wistar-Kyoto (WKY) rat strain has been described as an animal model of depressive behavior that consumes significantly greater amounts of alcohol compared to the Wistar (WIS) rat strain. Since the mesolimbic dopamine (DA) type-2 (D2) receptors mediate reward-related behaviors, the present study measured the binding of [125I]-Iodosulpiride to D2 receptors in the brains of WKY versus WIS rats following 24 days of voluntary alcohol or water consumption. Alcohol consuming WKY rats showed a significant increase in D2 receptor binding in several regions of the mesolimbic and nigrostriatal systems. In contrast, alcohol consuming WIS rats showed a reduction in D2 receptor binding in DA cell body areas. The differential regulation of D2 receptors by voluntary alcohol consumption in the two rat strains suggests that D2 receptor mediated neurotransmission may be playing a role in the increased alcohol drinking behavior reported in WKY rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (2009) Management of substance abuse: Alcohol [cited 2009 June 1]; available from: http://www.who.int/substance_abuse/facts/alcohol/en/index.html

  2. SAMHSA (2003) Results from the 2002 National Survey on Drug Use and Health: National Findings

  3. Di Chiara G, Acquas E, Carboni E (1992) Drug motivation and abuse: a neurobiological perspective. Ann N Y Acad Sci 654:207–219

    Article  CAS  PubMed  Google Scholar 

  4. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  CAS  PubMed  Google Scholar 

  5. Gambarana C, Masi F, Leggio B et al (2003) Acquisition of a palatable-food-sustained appetitive behavior in satiated rats is dependent on the dopaminergic response to this food in limbic areas. Neuroscience 121:179–187

    Article  CAS  PubMed  Google Scholar 

  6. Gambarana C, Masi F, Tagliamonte A et al (1999) A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: a microdialysis study. J Neurochem 72:2039–2046

    Article  CAS  PubMed  Google Scholar 

  7. Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527

    Article  CAS  PubMed  Google Scholar 

  8. Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    Article  CAS  PubMed  Google Scholar 

  9. Koob GF (1996) Hedonic valence, dopamine and motivation. Mol Psychiatry 1:186–189

    CAS  PubMed  Google Scholar 

  10. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  CAS  PubMed  Google Scholar 

  11. Yan QS, Zheng SZ, Feng MJ et al (2005) Involvement of 5-HT1B receptors within the ventral tegmental area in ethanol-induced increases in mesolimbic dopaminergic transmission. Brain Res 1060:126–137

    Article  CAS  PubMed  Google Scholar 

  12. Yoshimoto K, McBride WJ, Lumeng L et al (1992) Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res 16:781–785

    Article  CAS  PubMed  Google Scholar 

  13. Hutchison KE, Ray L, Sandman E et al (2006) The effect of olanzapine on craving and alcohol consumption. Neuropsychopharmacology 31:1310–1317

    CAS  PubMed  Google Scholar 

  14. Hutchison KE, Swift R, Rohsenow DJ et al (2001) Olanzapine reduces urge to drink after drinking cues and a priming dose of alcohol. Psychopharmacology (Berl) 155:27–34

    Article  CAS  Google Scholar 

  15. Ingman K, Korpi ER (2006) Alcohol drinking of alcohol-preferring AA rats is differentially affected by clozapine and olanzapine. Eur J Pharmacol 534:133–140

    Article  CAS  PubMed  Google Scholar 

  16. Blum K, Noble EP, Sheridan PJ et al (1990) Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 263:2055–2060

    Article  CAS  PubMed  Google Scholar 

  17. Comings DE, Comings BG, Muhleman D et al (1991) The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266:1793–1800

    Article  CAS  PubMed  Google Scholar 

  18. Garris PA, Budygin EA, Phillips PE et al (2003) A role for presynaptic mechanisms in the actions of nomifensine and haloperidol. Neuroscience 118:819–829

    Article  CAS  PubMed  Google Scholar 

  19. Kita JM, Parker LE, Phillips PE et al (2007) Paradoxical modulation of short-term facilitation of dopamine release by dopamine autoreceptors. J Neurochem 102:1115–1124

    Article  CAS  PubMed  Google Scholar 

  20. Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  21. Phillips TJ, Brown KJ, Burkhart-Kasch S et al (1998) Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci 1:610–615

    Article  CAS  PubMed  Google Scholar 

  22. Lopez-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22:191–199

    Article  CAS  PubMed  Google Scholar 

  23. Pare WP (1989) Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol Behav 46:993–998

    Article  CAS  PubMed  Google Scholar 

  24. Redei E, Pare WP, Aird F et al (1994) Strain differences in hypothalamic-pituitary-adrenal activity and stress ulcer. Am J Physiol 266:R353–R360

    CAS  PubMed  Google Scholar 

  25. Tejani-Butt S, Kluczynski J, Pare WP (2003) Strain-dependent modification of behavior following antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 27:7–14

    Article  CAS  PubMed  Google Scholar 

  26. Athey GR, Iams SG (1981) Cold-restraint induced gastric lesions in normotensive and spontaneously hypertensive rats. Life Sci 28:889–894

    Article  CAS  PubMed  Google Scholar 

  27. Pare WP (1992) The performance of WKY rats on three tests of emotional behavior. Physiol Behav 51:1051–1056

    Article  CAS  PubMed  Google Scholar 

  28. Tejani-Butt SM, Pare WP, Yang J (1994) Effect of repeated novel stressors on depressive behavior and brain norepinephrine receptor system in Sprague–Dawley and Wistar Kyoto (WKY) rats. Brain Res 649:27–35

    Article  CAS  PubMed  Google Scholar 

  29. Pare WP (1994) Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav 55:433–439

    Article  CAS  PubMed  Google Scholar 

  30. Jiao X, Pare WP, Tejani-Butt SM (2006) Antidepressant drug induced alterations in binding to central dopamine transporter sites in the Wistar Kyoto rat strain. Progr Neuropsychopharmacol Biol Psychiatry 30:30–41

    Article  CAS  Google Scholar 

  31. Rauhut AS, Zentner IJ, Mardekian SK et al (2008) Wistar Kyoto and Wistar rats differ in the affective and locomotor effects of nicotine. Physiol Behav 93:177–188

    Article  CAS  PubMed  Google Scholar 

  32. De la Garza R II (2005) Wistar Kyoto rats exhibit reduced sucrose pellet reinforcement behavior and intravenous nicotine self-administration. Pharmacol Biochem Behav 82:330–337

    Article  PubMed  Google Scholar 

  33. Jiao X, Pare WP, Tejani-Butt S (2003) Strain differences in the distribution of dopamine transporter sites in rat brain. Progr Neuropsychopharmacol Biol Psychiatry 27:913–919

    Article  CAS  Google Scholar 

  34. Novick A, Yaroslavsky I, Tejani-Butt S (2008) Strain differences in the expression of dopamine D1 receptors in Wistar-Kyoto (WKY) and Wistar rats. Life Sci 83:74–78

    Article  CAS  PubMed  Google Scholar 

  35. Yaroslavsky I, Colletti M, Jiao X et al (2006) Strain differences in the distribution of dopamine (DA-2 and DA-3) receptor sites in rat brain. Life Sci 79:772–776

    Article  CAS  PubMed  Google Scholar 

  36. De La Garza R II, Mahoney JJ III (2004) A distinct neurochemical profile in WKY rats at baseline and in response to acute stress: implications for animal models of anxiety and depression. Brain Res 1021:209–218

    Article  Google Scholar 

  37. Jiao X, Pare WP, Tejani-Butt SM (2006) Alcohol consumption alters dopamine transporter sites in Wistar-Kyoto rat brain. Brain Res 1073–1074:175–182

    Article  PubMed  Google Scholar 

  38. Yaroslavsky I, Tejani-Butt SM (2010) Voluntary alcohol consumption alters stress-induced changes in dopamine-2 receptor binding in Wistar-Kyoto rat brain. Pharmacol Biochem Behav 94:471–476

    Article  CAS  PubMed  Google Scholar 

  39. Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res 287:173–196

    CAS  PubMed  Google Scholar 

  40. Carli M, Evenden JL, Robbins TW (1985) Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313:679–682

    Article  CAS  PubMed  Google Scholar 

  41. Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580

    Article  CAS  PubMed  Google Scholar 

  42. Sandbak T, Murison R (1996) Voluntary alcohol consumption in rats: relationships to defensive burying and stress gastric erosions. Physiol Behav 59:983–989

    Article  CAS  PubMed  Google Scholar 

  43. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  44. Stefanski R, Lee SH, Yasar S et al (2002) Lack of persistent changes in the dopaminergic system of rats withdrawn from methamphetamine self-administration. Eur J Pharmacol 439:59–68

    Article  CAS  PubMed  Google Scholar 

  45. Fibiger HC (1995) Neurobiology of depression: focus on dopamine. Adv Biochem Psychopharmacol 49:1–17

    CAS  PubMed  Google Scholar 

  46. Weiss F, Porrino LJ (2002) Behavioral neurobiology of alcohol addiction: recent advances and challenges. J Neurosci 22:3332–3337

    CAS  PubMed  Google Scholar 

  47. Murphy JM, McBride WJ, Lumeng L et al (1987) Contents of monoamines in forebrain regions of alcohol-preferring (P) and—nonpreferring (NP) lines of rats. Pharmacol Biochem Behav 26:389–392

    Article  CAS  PubMed  Google Scholar 

  48. Scholl JL, Renner KJ, Forster GL et al. (2007) A neurochemical analysis of central biogenic amine levels in the Wistar-Kyoto rat: a proposed animal model of depressive behavior. In: Society for Neuroscience. Atlanta

  49. Sari Y, Bell RL, Zhou FC (2006) Effects of chronic alcohol and repeated deprivations on dopamine D1 and D2 receptor levels in the extended amygdala of inbred alcohol-preferring rats. Alcohol Clin Exp Res 30:46–56

    Article  CAS  PubMed  Google Scholar 

  50. Kim MO, Lee YK, Choi WS et al (1997) Prolonged ethanol intake increases D2 dopamine receptor expression in the rat brain. Mol Cells 7:682–687

    CAS  PubMed  Google Scholar 

  51. May PC, Osterburg HH, Mandel RJ et al (1987) Alteration of calmodulin distribution does not accompany dopaminergic supersensitization of the mouse striatum. J Neurosci Res 17:247–250

    Article  CAS  PubMed  Google Scholar 

  52. Severson JA, Robinson HE, Simpson GM (1984) Neuroleptic-induced striatal dopamine receptor supersensitivity in mice: relationship to dose and drug. Psychopharmacology (Berl) 84:115–119

    Article  CAS  Google Scholar 

  53. Eisenberg J, Brecher-Fride E, Weizman R et al (1982) Dopamine receptors in a rat model of minimal brain dysfunction. Neuropsychobiology 8:151–155

    Article  CAS  PubMed  Google Scholar 

  54. Pare WP (1992) Learning behavior, escape behavior, and depression in an ulcer susceptible rat strain. Integr Physiol Behav Sci 27:130–141

    Article  CAS  PubMed  Google Scholar 

  55. Biala G, Langwinski R (1996) Rewarding properties of some drugs studied by place preference conditioning. Pol J Pharmacol 48:425–430

    CAS  PubMed  Google Scholar 

  56. Nocjar C, Middaugh LD, Tavernetti M (1999) Ethanol consumption and place-preference conditioning in the alcohol-preferring C57BL/6 mouse: relationship with motor activity patterns. Alcohol Clin Exp Res 23:683–692

    CAS  PubMed  Google Scholar 

  57. Parker LA (1992) Place conditioning in a three- or four-choice apparatus: role of stimulus novelty in drug-induced place conditioning. Behav Neurosci 106:294–306

    Article  CAS  PubMed  Google Scholar 

  58. Shoaib M, Stolerman IP, Kumar RC (1994) Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology (Berl) 113:445–452

    Article  CAS  Google Scholar 

  59. Agmo A, Galvan A, Talamantes B (1995) Reward and reinforcement produced by drinking sucrose: two processes that may depend on different neurotransmitters. Pharmacol Biochem Behav 52:403–414

    Article  CAS  PubMed  Google Scholar 

  60. Czachowski CL, Santini LA, Legg BH et al (2002) Separate measures of ethanol seeking and drinking in the rat: effects of remoxipride. Alcohol 28:39–46

    Article  CAS  PubMed  Google Scholar 

  61. Eiler WJ II, June HL (2007) Blockade of GABA(A) receptors within the extended amygdala attenuates D(2) regulation of alcohol-motivated behaviors in the ventral tegmental area of alcohol-preferring (P) rats. Neuropharmacology 52:1570–1579

    Article  CAS  PubMed  Google Scholar 

  62. Sattar SP, Grant K, Bhatia S et al (2003) Potential use of olanzapine in treatment of substance dependence disorders. J Clin Psychopharmacol 23:413–415

    Article  PubMed  Google Scholar 

  63. Pare AM, Pare WP, Kluczynski J (1999) Negative affect and voluntary alcohol consumption in Wistar-Kyoto (WKY) and Sprague–Dawley rats. Physiol Behav 67:219–225

    Article  CAS  PubMed  Google Scholar 

  64. Cabib S, Puglisi-Allegra S (1996) Different effects of repeated stressful experiences on mesocortical and mesolimbic dopamine metabolism. Neuroscience 73:375–380

    Article  CAS  PubMed  Google Scholar 

  65. Vogele C, Steptoe A (1986) Physiological and subjective stress responses in surgical patients. J Psychosom Res 30:205–215

    Article  CAS  PubMed  Google Scholar 

  66. Rivier C, Vale W (1988) Interaction between ethanol and stress on ACTH and beta-endorphin secretion. Alcohol Clin Exp Res 12:206–210

    Article  CAS  PubMed  Google Scholar 

  67. Fadda F, Mosca E, Niffoi T et al (1987) Ethanol prevents stress-induced increase in cortical DOPAC: reversal by RO 15-4513. Physiol Behav 40:383–385

    Article  CAS  PubMed  Google Scholar 

  68. Shirao I, Tsuda A, Ida Y et al (1988) Effect of acute ethanol administration on noradrenaline metabolism in brain regions of stressed and nonstressed rats. Pharmacol Biochem Behav 30:769–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by USPHS Grant AA 015921 to S.T-B, and research funds from the Office of Research and Development, Medical Research Service, Department of Veteran Affairs (W. P.). The authors wish to thank Drs. William P. Paré and Xilu Jiao for their help with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanaz Tejani-Butt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morganstern, I., Tejani-Butt, S. Differential Patterns of Alcohol Consumption and Dopamine-2 Receptor Binding in Wistar-Kyoto and Wistar Rats. Neurochem Res 35, 1708–1715 (2010). https://doi.org/10.1007/s11064-010-0233-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0233-0

Keywords

Navigation