Abstract
Sida cordifolia is a plant belonging to the Malvaceae family used in many ayurvedic preparations. This study aimed at assessing the effects of ethanolic extract of Sida cordifolia root on quinolinic acid (QUIN) induced neurotoxicity and to compare its effect with the standard drug deprenyl in rat brain. Rats were divided into six groups: (1) control group (2) QUIN (55 μg/100 g bwt/day) (3) 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (4) Deprenyl (100 μg/100 g bwt/day) (5) QUIN (55 μg/100 g bwt/day) + 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (6) QUIN (55 μg/100 g bwt/day) + Deprenyl (100 μg/100 g bwt/day). At the end of the experimental period a status of lipid peroxidation products, protein peroxidation product, activities of the scavenging enzymes and the activities of the inflammatory markers were analyzed. Results revealed that the lipid peroxidation products decreased and the activities of the scavenging enzymes increased significantly in the brain of the plant extract treated group, deprenyl treated group and also in the coadminstered groups. The activities of markers of inflammatory responses such as cyclooxygenase and lipoxygenase were found to be significantly increased in the QUIN treated rats and this was decreased upon the administration of plant extract and deprenyl. In short, the study revealed that 50% ethanolic extract of Sida cordifolia has got potent antioxidant and antiinflammatory activity and the activity is comparable with the standard drug deprenyl.
Similar content being viewed by others
References
Diwan PV, Kanth VR (1999) Analgesic, anti-inflammatory and hypoglycemic activities of Sida cordifolia. Phytother Res 13:75–77
Rastogi RP, Malhotra BN (1985) Compendium of Indian medicinal plants. J Indian Med 4:674
Nagashayana N, Sankarankutty P, Nampoothiri MR et al (2000) Association of l-DOPA with recovery following ayurvedic medication in Parkinson’s disease. J Neurol Sci 176:124
Ghosh S, Dutt A (1930) Chemical examination of Sida cordifolia Linn. J Indian Chem Soc 7:825
Kubavat JB, Asdaq SM (2009) Role of Sida cordifolia L. leaves on biochemical and antioxidant profile during myocardial injury. J Ethnopharmacol 124(1):162–165
Auddy B, Ferreira M, Blasina F et al (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 84(2–3):131–138
Dhalwal K, Deshpande YS, Purohit AP et al (2005) Evaluation of the antioxidant activity of Sida cordifolia. Pharm Biol 43:754–761
Philip BK, Muralidharan A, Natarajan B et al (2008) Preliminary evaluation of anti-pyretic and anti-ulcerogenic activities of Sida cordifolia methanolic extract. Fitotherapia 79:229–231
Knoll J (1983) Deprenyl (selegeline): the history of its development and pharmacological action. Acta Neurol Scand (Suppl) 95:57–80
Maruyama W, Takahashi T, Naoi M (1998) Deprenyl protects human dopaminergic neuroblastma SH-SY5Y cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 70:2510–2515
Magyar K, Szende B, Lengyel J, Tekes K (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in deprenyl research. J Neural Transm (Suppl) 48:29–43
Lieberman A (1992) Long-term experience with selegeline and levodopa in Parkinson’s disease. Neurol (Suppl) 42:32–36
Santamaria A, Galvan-Arzate S, Lisy V et al (2001) Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport 12:871–874
Foster AC, Collins JF, Schwarcz R (1983) On the excitotoxic properties of quinolinic acid, 2,3-pyridine dicarboxylic acids and structurally related compounds. Neuropharmacology 22:1331–1342
During MJ, Heyes MP, Freese A et al (1989) Quinolinic acid concentrations in striatal extracellular fluid reach potentially neurotoxic levels following systemic l-tryptophan loading. Brain Res 476:384–387
Santamaria A, Rios C (1993) MK-801 an N-Methyl-d-Aspartate receptor antagonist, blocks quinolinic acid induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54
Santamaria A, Vazquez-Roman B, La Cruz VP et al (2005) Selenium reduces the proapoptotic signaling associated to NF-KappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolate in rat corpus striatum. Synapse 58:258–266
Hume CW (1972) The UFAW handbook on the care and management of laboratory animals. Churchill Livigstone, Edinburgh/London
Fedele E, Foster AC (1993) An evaluation of the role of extracellular aminoacids in the delayed neurodegeneration induced by quinolinic acid in the rat striatum. Neuroscience 52:911–917
Muge K, Husnu AB, Cetin P et al (2008) Protective effects of deprenyl in transient cerebral ischemia in rats. Chin J Physiol 51:275–281
Folch J, Less M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358
Mair RD, Hall T (1970) Determination of organic peroxides by physical chemical and colorimetric methods. In: Swern D, Wiley CD (eds) Inorganic peroxides II, vol 2. Wiley/Intersciences, New York, pp 535–538
Reckangel RO, Ghoshal AK (1966) Quantitative estimation of peroxidative degeneration of rat liver micrososmal and mitochondrial lipids after carbon tetrachloride poisoning. Exp Mol Pathol 5:413–418
Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol chem 193:265–275
Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132
Maehly AC, Chance B (1954) The assay of catalase and peroxides. In: Glick D (ed) Methods of biochemical analysis, vol 1. Interscience, New York, pp 357–424
David M, Richard JS (1983) Glutathione reductase. In: Bermeyer HU Jr (ed) Methods of enzymatic analysis. Verlagchemie GmbH, Weinhein, pp 258–265
Lawerence RA, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71:952–958
Agergurd N, Jense PJ (1982) Procedure for blood glutathione peroxidase determination in cattle and swine. Anta Vet Scand 23:515–529
Patterson JW, Lazarow A (1955) Determination of glutathione. In: Glick D (ed) Methods of biochemical analysis, vol 2. Interscience, NewYork, pp 259–279
Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chem Acta 46:105–111
Tabor CW, Tabor H, Rosenthal SM (1954) Purification of amine oxidase from beef plasma. J Biol Chem 208:645–661
Huh HY, Pearce SF, Yesner LM et al (1996) Regulated expression of CD36 during monocyte to macrophage differentiation: potential role of CD36 in foam cell formation. Blood J 87:2020
Axelrod B, Cheesbrough TM, Laasko S (1981) Lipoxygenase in soybeans. In: Lowenstein JM (ed) Methods enzymol, vol 71, p 441
Shimizu T, Kondo K, Hayaishi O (1981) Role of prostaglandin endoperoxidases in the serum thiobarbituric acid reaction. Arch Biochim Biophys 206:271–276
Abraham ZR, Packer L (1993) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol Part C 233:357–363
Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291
Docampo R (1995) Antioxidant mechanisms. In: Marr J, Muller M (eds) Biochemistry and molecular biology of parasites. Academic Press, London, p 147
Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic press, London, p 1
Dexter DT, Carter CJ, Wells FR et al (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389
Yoshikawa T (1993) Free radicals and their scavengers in Parkinson’s disease. Eur Neurol 33:60–68
Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B et al (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86:479–488
Behan WM, Mc Donald M, Darlington LG (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and Deprenyl. Br J Pharmacol 128:1754–1760
Kitani K, Minami C, Isobe K et al (2002) Why (-) deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors maylead to systemic anti-aging effects. Mech Ageing Dev 123:1087–1100
Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer disease. Neurobiol Aging 21:343–348
Kwon YS, Ann HS, Nabeshima T et al (2004) Selegiline potentiates the effects of EGb 761 in response to ischemic brain injury. Neurochem Int 45:157–170
Maia FD, Pitombeira BS, Araujo DT et al (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Eurobiol 24:87–100
Muge K, Husnu AB, Cetin P et al (2008) Protective effects of deprenyl in transient cerebral ischemia in rats. Chin J Physiol 51(5):275–281
Sutradhar RK, Rahman AM, Ahmad M et al (2007) Anti-inflammatory and analgesic alkaloid from Sida cordifolia linn. Pak J Pharm Sci 20:185–188
Varrier PK (1996) Indian medicinal plants: compendium of 500 species, vol 5. Orient Longman, Hyderabad, p 135
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Swathy, S.S., Panicker, S., Nithya, R.S. et al. Antiperoxidative and Antiinflammatory Effect of Sida Cordifolia Linn. on Quinolinic Acid Induced Neurotoxicity. Neurochem Res 35, 1361–1367 (2010). https://doi.org/10.1007/s11064-010-0192-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11064-010-0192-5