Skip to main content
Log in

Selenium Concentration in Cerebrospinal Fluid Samples from a Paediatric Population

  • Comments
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Selenium is an important trace element for brain function. Our objective was to analyse cerebrospinal fluid (CSF) selenium (Se) in 89 paediatric patients. We also studied correlations between Se and other biochemical variables (age, CSF protein concentrations and glutathione peroxidase activity and plasma Se values). Cerebrospinal fluid Se values showed a significant negative correlation with the age of patients (r = −0.476; p < 0.0001), and positive with CSF total protein concentrations and GPX activity (r = 0.446, p < 0.001; r = 0.431; p = 0.001, respectively). No association was observed between plasma and CSF Se concentrations. Median CSF Se values were 32 times lower when compared with those for plasma. In conclusion, CSF Se concentrations depend on age and total CSF protein values. The association observed between CSF Se and GPX activity suggests that Se quantification might be a reflection of some Se-dependent protein function. Cerebrospinal fluid Se values were independent of serum Se concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Burck RF, Hill KE, Motley KM (2003) Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J Nutr 133:15175–20000

    Google Scholar 

  2. Moghadaszadeh B, Beggs AH (2006) Selenoproteins and their impact on human health through diverse physiological pathways. Physiology 21:307–315

    Article  CAS  PubMed  Google Scholar 

  3. Brenneise P, Steinbrenner H, Sies H (2005) Selenium, oxidative stress and health aspects. Mol Aspects Med 26:256–267

    Article  Google Scholar 

  4. Oldfield JE (2002) A brief history of selenium research: from alkali disease to prostate cancer (from poison to prevention). J Anim Sci. Online supplement: 1–4

  5. Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86:1–12

    Article  CAS  PubMed  Google Scholar 

  6. Richardson R (2005) More roles for selenoprotein P: local selenium storage and recycling protein in the brain. Biochem J 386:e5–e7

    Article  CAS  PubMed  Google Scholar 

  7. Alimonti A, Bocca B, Pino A et al (2007) Elemental profile of cerebrospinal fluid in patients with Parkinson’s disease. J Trace Elem Med Biol 21:234–241

    Article  CAS  PubMed  Google Scholar 

  8. Meseguer I, Molina JA, Jiménez-Jiménez FJ et al (1999) Cerebrospinal fluid levels of selenium in patients with Alzheimer’s disease. J Neural Transm 106:309–315

    Article  CAS  PubMed  Google Scholar 

  9. Forte G, Bocca B, Senofonte O et al (2004) Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm 111:1031–1040

    Article  CAS  PubMed  Google Scholar 

  10. Savman K, Nilsson UA, Blennow M et al (2001) Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res 49:208–212

    Article  CAS  PubMed  Google Scholar 

  11. Ogihara T, Hirano K, Ogihara HT et al (2003) Non-protein-bound transition metals and hydroxyl radical generation in cerebrospinal fluid of newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 53:594–599

    Article  CAS  PubMed  Google Scholar 

  12. Mollah MA, Dey PR, Tarafdar SA et al (2002) Zinc in CSF of patients with febrile convulsion. Indian J Pediatr 69:859–861

    Article  PubMed  Google Scholar 

  13. Hyland K, Lauren A, Arnold MS (1999) Value of lumbar puncture in the diagnosis of genetic metabolic encephalopathies. J Child Neurol 14:S9–S15

    PubMed  Google Scholar 

  14. Heitland P, Köster HD (2006) Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS. J Trace Elem Med Bio 20:253–262

    Article  CAS  Google Scholar 

  15. Agilent Technologies: Wahlen R, Evans L, Turner J, Hearn R (2005) The use of collision/reaction cell ICP-MS for the simultaneous determination of 18 elements in blood and serum samples. Internet: http://www.agilent.com/chem

  16. Plagia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    Google Scholar 

  17. Belsley DA, Kuh K, Welsch RE (1980) Identifying influential data and sources of collinearity. In: Regression diagnostics. Wiley, New York, pp xv-292

  18. Pyne-Geithman GJ, Caudell DN, Prakash P et al (2009) Glutathione peroxidase and subarachnoid hemorrhage: implications for the role of oxidative stress in cerebral vasospasm. Neurol Res 31:195–199

    Article  CAS  PubMed  Google Scholar 

  19. Velázquez I, Plaud M, Wojna V et al (2009) Antioxidant enzyme dysfunction in monocytes and CSF of Hispanic women with HIV-associated cognitive impairment. J Neuroimmunol 206:106–111

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

CIBERER is an initiative of Instituto de Salud Carlos III (MICIN, Spain). R.A. is supported by the program Intensificación de la Actividad Investigadora, of the ISCIII-MICIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Artuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tondo, M., Moreno, J., Casado, M. et al. Selenium Concentration in Cerebrospinal Fluid Samples from a Paediatric Population. Neurochem Res 35, 1290–1293 (2010). https://doi.org/10.1007/s11064-010-0182-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0182-7

Keywords

Navigation